Abstract:
An apparatus includes a controller and an adaptive error correction code decoder. The controller may be configured to read data from and write data to a memory device. The controller may be further configured to write data in a two-step process, which includes (i) after writing data to a least significant bit (LSB) page, checking the data stored in the LSB page using a first strength error correction code (ECC) decoding process and (ii) after writing data to a most significant bit (MSB) page associated with the LSB page, checking the data stored in both the LSB and MSB pages using a second strength error correction code (ECC) decoding process.
Abstract:
A method for encoding a reduced polar code is disclosed. The method generally includes (a) modifying an input codeword including polar code encoded input data by removing one or more bits from one of (i) a first part of the input codeword and (ii) a second part of the input codeword and (b) generating an output codeword by concatenating the first and the second parts of the modified input codeword.
Abstract:
A method for encoding a reduced polar code is disclosed. The method generally includes (a) modifying an input codeword including polar code encoded input data by removing one or more bits from one of (i) a first part of the input codeword and (ii) a second part of the input codeword and (b) generating an output codeword by concatenating the first and the second parts of the modified input codeword.
Abstract:
An apparatus having a circuit and an interface to a nonvolatile memory is disclosed. The circuit is configured to (i) read a plurality of bits in a read channel of the nonvolatile memory. The bits are encoded with a polar code. The circuit is also configured to (ii) generate a plurality of probabilities based on a plurality of log likelihood ratio values of the read channel and (iii) decode the bits based on the probabilities.
Abstract:
A method for encoding a reduced polar code is disclosed. The method generally includes steps (A) to (C). Step (A) may generate the intermediate codeword by polar code encoding input data. Step (B) may remove one or more bits from one of (i) a first part of the intermediate codeword and (ii) a second part of the intermediate codeword. Step (C) may generate an output codeword by concatenating the first part of the intermediate codeword with the second part of the intermediate codeword after the bits are removed.