摘要:
There has been a problem that the cell units cannot bear the load exerted on the units while being stacked since a fuel cell stack including a refrigerant channel formed between cell units each having an even number of electrolyte/electrode structures (MEA) and metal separators which are alternated does not have any structure supporting the separators forming the refrigerant channel in a stacking direction. In order to solve the above problem, in each of a first power generating unit and a second power generating unit, projections formed at the buffer portions of the separators are disposed in the same positions in the stacking direction with the MEA interposed therebetween. Since between the first and second power generating units, the projections of the buffer portions are staggered, the projections of the first and second power generating units are thereby disposed in the same positions in the stacking direction.
摘要:
An oxygen-containing gas flow field is formed on a surface of a cathode side metal separator of a fuel cell. The oxygen-containing gas flow field is connected between an oxygen-containing gas supply passage and an oxygen-containing gas discharge passage. A coolant flow field is formed on the other surface of the cathode side metal separator, on the back of the oxygen-containing gas flow field. The cathode side metal separator has linear guide ridges protruding from an intermediate height area toward the oxygen-containing gas flow field to form a continuous guide flow field, and bosses protruding from the intermediate height area toward the coolant flow field to form an embossed flow field.
摘要:
A fuel cell is formed by stacking first cell units and second cell units alternately. An inlet buffer and an outlet buffer are formed on a surface of a first metal separator of the first cell unit. Bosses are provided in the inlet buffer and the outlet buffer of the first metal separator. An inlet buffer and an outlet buffer are formed on a surface of the second metal separator of the first cell unit. Continuous guide ridges are formed in the inlet buffer and the outlet buffer of the second metal separator. The bosses and the continuous guide ridges are provided at positions overlapped with each other in the stacking direction.
摘要:
An oxidant gas conduit communicating with both an oxidant gas inlet communication hole and an oxidant gas outlet communication hole is formed in a surface of a cathode-side metallic separator which forms a fuel cell. Continuous linear guide ridges which protrude from intermediate height sections to the oxidant gas conduit side and form continuous guide conduits are provided on the cathode-side metallic separator. The linear guide ridges are continuously connected to ends of rectilinear conduit ridges which form rectilinear conduits, are provided with bend portions, and are set to lengths which are different from each other in a step-like manner.
摘要:
An oxidant gas conduit communicating with both an oxidant gas inlet communication hole and an oxidant gas outlet communication hole is formed in a surface of a cathode-side metallic separator which forms a fuel cell. Continuous linear guide ridges which protrude from intermediate height sections to the oxidant gas conduit side and form continuous guide conduits are provided on the cathode-side metallic separator. The linear guide ridges are continuously connected to ends of rectilinear conduit ridges which form rectilinear conduits, are provided with bend portions, and are set to lengths which are different from each other in a step-like manner.
摘要:
A fuel cell is formed by sandwiching a membrane electrode assembly between a first separator and a second separator. A fuel gas flow field is formed in the second separator. An inlet buffer is connected to the inlet of the fuel gas flow field, and an outlet buffer is connected to an outlet of the fuel gas flow field. The inlet buffer is deeper than the outlet buffer. Therefore, the pressure loss in the inlet buffer is smaller than the pressure loss in the outlet buffer.
摘要:
There has been a problem that the cell units cannot bear the load exerted on the units while being stacked since a fuel cell stack including a refrigerant channel formed between cell units each having an even number of electrolyte/electrode structures (MEA) and metal separators which are alternated does not have any structure supporting the separators forming the refrigerant channel in a stacking direction. In order to solve the above problem, in each of a first power generating unit and a second power generating unit, projections formed at the buffer portions of the separators are disposed in the same positions in the stacking direction with the MEA interposed therebetween. Since between the first and second power generating units, the projections of the buffer portions are staggered, the projections of the first and second power generating units are thereby disposed in the same positions in the stacking direction.
摘要:
A method of manufacturing a metal separator for a fuel cell includes providing an opening in a metal plate which is to be a part of the metal separator for the fuel cell, integrally molding a sealing member on both sides of an outer peripheral edge of the metal plate to cover the opening, and trimming the sealing member to remove a covering portion of the sealing member that covers the opening and to provide a fluid communication hole, at least one of a fuel gas, an oxidant gas, and a cooling medium being to pass through the fluid communication hole in the fuel cell.
摘要:
Provided is an optical film which does not undergo the deterioration in front contrast or contrast fluctuations even when used in a VA-type liquid crystal display device having high front contrast or as a polarizing plate protection film. The optical film comprises a cellulose ester resin having high stretching adequacy and having an average acetyl group substitution degree of 2.0-2.6, has a phase difference (Ro) of 30-100 nm, a phase difference (Rth) of 70-400 nm and a film thickness of 15-50 μm, and is characterized by fulfilling a requirement represented by formula (I). Formula (I): 0.01
摘要:
A femtocell base station (FAP) converts, when information concerning a SMS is received from UE (User Equipment), the received information concerning the SMS into a SIP (Session Initiation Protocol) message including the received information concerning the SMS and transmits the converted SIP message to the core network side. The femtocell base station converts, when a SIP message including information concerning the SMS is received from the core network side, the information concerning the SMS included in the received SIP message into a message that can be recognized by the UE and transmits the converted information concerning the SMS to the UE.