Abstract:
An object of one embodiment of the present invention is to provide a secondary battery in which deterioration of charge-discharge cycle characteristics is suppressed, to suppress generation of defects caused by expansion and contraction of an active material in a negative electrode, or to prevent deterioration caused by deformation of a secondary battery. To prevent deterioration, a material that can be alloyed with lithium and fluidified easily is used for a negative electrode. To hold a negative electrode active material over a surface of a current collector, a covering layer that covers the negative electrode active material is provided. Furthermore, a portion where the current collector and the negative electrode active material are in contact with each other is alloyed. In other words, an alloy that is in contact with both the current collector and the negative electrode active material is provided in the negative electrode.
Abstract:
An object of one embodiment of the present invention is to provide a secondary battery in which deterioration of charge-discharge cycle characteristics is suppressed, to suppress generation of defects caused by expansion and contraction of an active material in a negative electrode, or to prevent deterioration caused by deformation of a secondary battery. To prevent deterioration, a material that can be alloyed with lithium and fluidified easily is used for a negative electrode. To hold a negative electrode active material over a surface of a current collector, a covering layer that covers the negative electrode active material is provided. Furthermore, a portion where the current collector and the negative electrode active material are in contact with each other is alloyed. In other words, an alloy that is in contact with both the current collector and the negative electrode active material is provided in the negative electrode.
Abstract:
To inhibit degradation of charge and discharge cycle characteristics of a secondary battery. To suppress generation of defects due to expansion and contraction of an active material in a negative electrode. To inhibit deterioration of an electrode due to changes in its form. An electrode member including a current collector, an active material, and a porous body is used. The porous body is in contact with one surface of the current collector and includes a plurality of spaces. The active material is located in the space in the porous body. The space has a larger size than the active material.
Abstract:
A lithium-ion secondary battery with no negative electrode active material is provided. One embodiment of the present invention is a lithium-ion secondary battery including a positive electrode, a negative electrode, an electrolyte solution, and a separator between the positive electrode and the negative electrode. The negative electrode includes a negative electrode current collector which includes a region in direct contact with at least one of the electrolyte solution and the separator. The electrolyte solution contains fluorine. The negative electrode current collector has a function of making a deposit containing lithium to be deposited on a surface in charging. Furthermore, a spacer may be provided between the separator and the negative electrode. The electrolyte solution may contain an organic compound containing fluorine. Supply of fluorine from the electrolyte solution to lithium deposited on the surface of the negative electrode can suppress deposition of lithium dendrites (whiskers) in further deposition.
Abstract:
To increase the capacity and energy density of a secondary battery by using a novel material as a material for a negative electrode in order to increase the amount of lithium ions transferred in charge and discharge. In the case where the negative electrode includes a current collector and a negative electrode active material layer, gallium is used as the negative electrode active material, and the negative electrode active material layer contains resin at 2 wt % or more, preferably 10 wt % or more, adhesion between the current collector and the negative electrode active material can be increased. This inhibits separation between the current collector and the negative electrode active material due repeated expansion and contraction, resulting in longer lifetime of the secondary battery.