Abstract:
In various example embodiments, a system and method for interactive applications that use location-based information from a light sensor network are presented. In example embodiments, data indicating a destination location inside a geofence is received. The geofence represents a boundary around multiple private beacon nodes, which are associated with a light sensor network, and their associated beacon communications ranges. Navigation and tracking outside the geofence is based on at least one of global positioning system (GPS) signals and beacon signals received by the mobile device from at least one public beacon device within a beacon communications range of the mobile device located outside the geofence. Navigation and tracking inside the geofence is based on the beacon signals received by the mobile device from at least one private beacon node within the beacon communications range of the mobile device located inside the geofence and a virtual map including an area within the geofence.
Abstract:
A method and associated apparatus are disclosed for measuring illumination characteristics of a luminaire having unknown characteristics. The method includes steps of providing an array of calibrated photodetectors in known locations in proximity to a mounting location, and then illuminating the array with a luminaire having unknown illumination properties. The resulting data is used to calculate the luminous intensity vs. angle from the luminaire and the luminous flux of the luminaire. Methods of calibrating the measurement with a known luminaire are presented along with methods of determining the angular position of the detectors in the array. Color-sensitive detectors can be used to determine the angular distribution and average value of the luminaire's correlated color temperature.
Abstract:
In various example embodiments, a system and method for interactive applications that use location-based information from a light sensor network are presented. In example embodiments, data indicating a destination location inside a geofence is received. The geofence represents a boundary around multiple private beacon nodes, which are associated with a light sensor network, and their associated beacon communications ranges. Navigation and tracking outside the geofence is based on at least one of global positioning system (GPS) signals and beacon signals received by the mobile device from at least one public beacon device within a beacon communications range of the mobile device located outside the geofence. Navigation and tracking inside the geofence is based on the beacon signals received by the mobile device from at least one private beacon node within the beacon communications range of the mobile device located inside the geofence and a virtual map including an area within the geofence.
Abstract:
A method of determining the position of an array of sensors, an array of solid-state lamps, or other devices which sense or emit electromagnetic waves includes first determining a sensing or emitting distribution for one of the devices, then integrating that distribution over the area to be covered by the sensors or emitters. In response to the integrated distribution, the sensors or emitters may be repositioned, reconfigured, or reoriented to provide desired coverage. Wireless access points that communicate to wireless end points associated with the lights and/or sensors are designed and positioned to provide adequate signal strength. All elements, light distribution, sensor range, and wireless signal strength may be plotted in contour plots within the same user interface that enables users to place the devices in a specified area.
Abstract:
In various example embodiments, a system and method for interactive applications that use location-based information from a light sensor network are presented. In example embodiments, data indicating a destination location inside a geofence is received. The geofence represents a boundary around multiple private beacon nodes, which are associated with a light sensor network, and their associated beacon communications ranges. Navigation and tracking outside the geofence is based on at least one of global positioning system (GPS) signals and beacon signals received by the mobile device from at least one public beacon device within a beacon communications range of the mobile device located outside the geofence. Navigation and tracking inside the geofence is based on the beacon signals received by the mobile device from at least one private beacon node within the beacon communications range of the mobile device located inside the geofence and a virtual map including an area within the geofence.
Abstract:
In various example embodiments, a system and method for interactive applications that use location-based information from a light sensor network are presented. In example embodiments, data indicating a destination location inside a geofence is received. The geofence represents a boundary around multiple private beacon nodes, which are associated with a light sensor network, and their associated beacon communications ranges. Navigation and tracking outside the geofence is based on at least one of global positioning system (GPS) signals and beacon signals received by the mobile device from at least one public beacon device within a beacon communications range of the mobile device located outside the geofence. Navigation and tracking inside the geofence is based on the beacon signals received by the mobile device from at least one private beacon node within the beacon communications range of the mobile device located inside the geofence and a virtual map including an area within the geofence.
Abstract:
In various example embodiments, a system and method for interactive applications that use location-based information from a light sensor network are presented. In example embodiments, data indicating a destination location inside a geofence is received. The geofence represents a boundary around multiple private beacon nodes, which are associated with a light sensor network, and their associated beacon communications ranges. Navigation and tracking outside the geofence is based on at least one of global positioning system (GPS) signals and beacon signals received by the mobile device from at least one public beacon device within a beacon communications range of the mobile device located outside the geofence. Navigation and tracking inside the geofence is based on the beacon signals received by the mobile device from at least one private beacon node within the beacon communications range of the mobile device located inside the geofence and a virtual map including an area within the geofence.
Abstract:
A method and associated apparatus are disclosed for measuring illumination characteristics of a luminaire having unknown characteristics. The method includes steps of providing an array of calibrated photodetectors in known locations in proximity to a mounting location, and then illuminating the array with a luminaire having unknown illumination properties. The resulting data is used to calculate the luminous intensity vs. angle from the luminaire and the luminous flux of the luminaire. Methods of calibrating the measurement with a known luminaire are presented along with methods of determining the angular position of the detectors in the array. Color-sensitive detectors can be used to determine the angular distribution and average value of the luminaire's correlated color temperature.
Abstract:
A method and associated apparatus are disclosed for measuring illumination characteristics of a luminaire having unknown characteristics. The method includes steps of providing an array of calibrated photodetectors in known locations in proximity to a mounting location, and then illuminating the array with a luminaire having unknown illumination properties. The resulting data is used to calculate the luminous intensity vs. angle from the luminaire and the luminous flux of the luminaire. Methods of calibrating the measurement with a known luminaire are presented along with methods of determining the angular position of the detectors in the array. Color-sensitive detectors can be used to determine the angular distribution and average value of the luminaire's correlated color temperature.
Abstract:
A method of determining the position of an array of sensors, an array of solid-state lamps, or other devices which sense or emit electromagnetic waves includes first determining a sensing or emitting distribution for one of the devices, then integrating that distribution over the area to be covered by the sensors or emitters. In response to the integrated distribution, the sensors or emitters may be repositioned, reconfigured, or reoriented to provide desired coverage. Wireless access points that communicate to wireless end points associated with the lights and/or sensors are designed and positioned to provide adequate signal strength. All elements, light distribution, sensor range, and wireless signal strength may be plotted in contour plots within the same user interface that enables users to place the devices in a specified area.