摘要:
Disclosed is an electrode whose surface includes an organic/inorganic composite porous coating layer comprising heat-absorbing inorganic particles and a binder polymer, wherein the heat-absorbing inorganic particle is at least one particle selected from the group consisting of antimony-containing compounds, metal hydroxides, guanidine-based compounds, boron-containing compounds and zinc tartrate compounds. A separator using the heat-absorbing inorganic particles as a component for forming or coating the separator, and an electrochemical device including the electrode and/or the separator are also disclosed. The separator using the heat-absorbing inorganic particles as a component for forming or coating the separator can ensure excellent thermal safety and minimizes degradation of the quality of a battery.
摘要:
Disclosed is an electrode whose surface includes an organic/inorganic composite porous coating layer comprising heat-absorbing inorganic particles and a binder polymer, wherein the heat-absorbing inorganic particle is at least one particle selected from the group consisting of antimony-containing compounds, metal hydroxides, guanidine-based compounds, boron-containing compounds and zinc tartrate compounds. A separator using the heat-absorbing inorganic particles as a component for forming or coating the separator, and an electrochemical device including the electrode and/or the separator are also disclosed. The separator using the heat-absorbing inorganic particles as a component for forming or coating the separator can ensure excellent thermal safety and minimizes degradation of the quality of a battery.
摘要:
Disclosed is an organic/inorganic composite separator including: a porous substrate having pores; and a porous active layer containing a mixture of inorganic particles and a binder polymer with which at least one surface of the porous substrate is coated. The organic/inorganic composite separator of the present invention may be useful to enhance peeling and scratch resistances and improve a lamination characteristic by introducing a porous active layer onto a porous substrate having pores, the porous active layer having heterogeneity of morphology toward a thickness direction in which a content ratio of the binder polymer/inorganic particles present in a surface layer is higher than that of the binder polymer/inorganic particles present inside the surface layer. Accordingly, the stability and performances of a battery can be improved together since the detachment of inorganic particles from the porous active layer may be reduced during the assembly process of the electrochemical device.
摘要:
An organic/inorganic composite separator includes (a) a polyolefin porous substrate having pores; and (b) a porous active layer containing a mixture of inorganic particles and a binder polymer, with which at least one surface of the polyolefin porous substrate is coated, wherein the porous active layer has a peeling force of 5 gf/cm or above, and a thermal shrinkage of the separator after being left alone at 150° C. for 1 hour is 50% or below in a machine direction (MD) or in a transverse direction (TD). This organic/inorganic composite separator solves the problem that inorganic particles in the porous active layer formed on the porous substrate are extracted during an assembly process of an electrochemical device, and also it may prevent an electric short circuit between cathode and anode even when the electrochemical device is overheated.
摘要:
Disclosed is an organic/inorganic composite separator including: a porous substrate having pores; and a porous active layer containing a mixture of inorganic particles and a binder polymer with which at least one surface of the porous substrate is coated. The organic/inorganic composite separator of the present invention may be useful to enhance peeling and scratch resistances and improve a lamination characteristic by introducing a porous active layer onto a porous substrate having pores, the porous active layer having heterogeneity of morphology toward a thickness direction in which a content ratio of the binder polymer/inorganic particles present in a surface layer is higher than that of the binder polymer/inorganic particles present inside the surface layer. Accordingly, the stability and performances of a battery can be improved together since the detachment of inorganic particles from the porous active layer may be reduced during the assembly process of the electrochemical device.
摘要:
An organic/inorganic composite separator includes (a) a polyolefin porous substrate having pores; and (b) a porous active layer containing a mixture of inorganic particles and a binder polymer, with which at least one surface of the polyolefin porous substrate is coated, wherein the porous active layer has a peeling force of 5 gf/cm or above, and a thermal shrinkage of the separator after being left alone at 150° C. for 1 hour is 50% or below in a machine direction (MD) or in a transverse direction (TD). This organic/inorganic composite separator solves the problem that inorganic particles in the porous active layer formed on the porous substrate are extracted during an assembly process of an electrochemical device, and also it may prevent an electric short circuit between cathode and anode even when the electrochemical device is overheated.
摘要:
An electrochemical device includes a plurality of unit cells, each having a first separator and a cathode and an anode positioned at both sides of the first separator, and a continuous single second separator interposed between adjacent unit cells in correspondence with each other in a laminated pattern and arranged to surround each unit cell. The first separator includes a heat-resisting porous substrate having a melt point of 200° C. or above and a first porous coating layer formed on at least one surface of the heat-resisting porous substrate and made of a mixture of a plurality of inorganic particles and a binder polymer. The second separator includes a polyolefin porous substrate and a second porous coating layer formed on at least one surface of the polyolefin porous substrate and made of a mixture of a plurality of inorganic particles and a binder polymer.
摘要:
An electrochemical device includes a plurality of unit cells, each having a first separator and a cathode and an anode positioned at both sides of the first separator, and a continuous single second separator interposed between adjacent unit cells in correspondence with each other in a laminated pattern and arranged to surround each unit cell. The first separator includes a heat-resisting porous substrate having a melt point of 200° C. or above and a first porous coating layer formed on at least one surface of the heat-resisting porous substrate and made of a mixture of a plurality of inorganic particles and a binder polymer. The second separator includes a polyolefin porous substrate and a second porous coating layer formed on at least one surface of the polyolefin porous substrate and made of a mixture of a plurality of inorganic particles and a binder polymer.
摘要:
Disclosed is an electrode comprising an organic/inorganic composite introduced onto either surface or both surfaces thereof, the organic/inorganic composite comprising inorganic particle or aggregates thereof having a unique spectrum or color pattern according to a predetermined rule, and a polymer capable of interconnecting and fixing the inorganic particles. Also, disclosed are an electrochemical device comprising the above electrode, and a method for identifying the origin or kind of an electrode itself or an electrochemical device comprising the same by using the above electrode.
摘要:
Disclosed is a separator comprising inorganic particle or aggregates thereof having a unique spectrum or color pattern according to a predetermined rule. Also, disclosed are an electrochemical device comprising the above separator and a method for identifying the origin or kind of the separator itself or the electrochemical device comprising the same by using the above separator. Further, disclosed is a method for manufacturing the aforementioned separator, the method comprising a step of forming a specific pattern by coating inorganic particles having a unique spectrum or color pattern on at least one area selected from the group consisting of a surface of a porous substrate and a porous part of the substrate.