摘要:
An optical pickup apparatus includes a light generating unit to generate a light to record or reproduce information, an objective lens to focus the light generated from the light generating unit onto a disk, and a multi-sectional polarizer disposed on a light path between the light generating unit and the objective lens and divided into a plurality of sectors having their individual optical axes.
摘要:
An optical pickup apparatus includes a light generating unit to generate a light to record or reproduce information, an objective lens to focus the light generated from the light generating unit onto a disk, and a multi-sectional polarizer disposed on a light path between the light generating unit and the objective lens and divided into a plurality of sectors having their individual optical axes.
摘要:
An object lens for an optical disk may include an aspherical lens surface, and an aspherical equation, which may be applied to form the aspherical lens surface may include two 2nd order function terms. Accordingly, a lens, which has a high numerical aperture (NA) and also has a small flexure on a lens surface or aberration, is provided.
摘要:
An aspheric lens includes at least one aspheric lens surface, and an angle of inclination on the aspheric lens surface is smaller than or equal to 65°. The aspheric lens surface is given by the equation Z ( r ) = cr 2 1 + 1 - ( 1 + K ) c 2 r 2 + Lr 2 + Ar 4 + Br 6 + Cr 8 + Dr 10 + Er 12 + Fr 14 + Gr 16 + Hr 18 + Jr 20 where L≠0, c is a curvature, r2=x2+y2, K is a conic integer, and L and A through J are aspheric coefficients.
摘要翻译:非球面透镜包括至少一个非球面透镜表面,非球面透镜表面上的倾斜角小于或等于65°。 非球面透镜表面由方程Z(r)= cr 2 1 + 1 - (1 + K)c 2 r 2 + Lr 2 + Ar 4 + Br 6 + Cr 8 + Dr 10 + Er 12 + Fr 14 + Gr 16 + Hr 18 + Jr 20其中L≠0,c是曲率,r2 = x2 + y2,K是圆锥整数,L和A到J是非球面系数。
摘要:
An optical pickup apparatus includes a first objective lens having a low numerical aperture (NA) suitable for a low-density recording medium, a second objective lens having a high NA suitable for a high-density recording medium, a first light source to generate a short-wavelength optical signal to use the first and second objective lenses, a first photo-detector to receive an optical signal, which is generated from the first light source, is focused on a recording medium by the first and second objective lenses, and is then reflected from the recording medium, and a beam splitter to perform a division of the optical signal generated from the first light source, to direct some parts of the divided optical signal to the first objective lens, and to direct the other parts of the divided optical signal to the second objective lens.
摘要:
An optical pickup apparatus includes a first objective lens having a low numerical aperture (NA) suitable for a low-density recording medium, a second objective lens having a high NA suitable for a high-density recording medium, a first light source to generate a short-wavelength optical signal to use the first and second objective lenses, a first photo-detector to receive an optical signal, which is generated from the first light source, is focused on a recording medium by the first and second objective lenses, and is then reflected from the recording medium, and a beam splitter to perform a division of the optical signal generated from the first light source, to direct some parts of the divided optical signal to the first objective lens, and to direct the other parts of the divided optical signal to the second objective lens.
摘要:
An optical beam forming apparatus capable of forming a polarization of laser beam into an elliptic polarization includes a beam source to emit a semiconductor laser beam, a wave plate to receive the beam emitted from the beam source and to form an elliptic polarization, and a lens to focus the beam passed through the wave plate to form a beam spot on a disc.
摘要:
An optical pick-up apparatus for reproducing information recorded on an optical recording medium or recording information on the optical recording medium is provided. The optical pick-up apparatus includes a light source unit which generates beams; a diffraction element which diffracts the generated beams; and an objective lens which focuses a p order diffracted beam which is used for recording and reproducing information among a plurality of diffracted beams which are diffracted by the diffraction element on any one of a plurality of information layers which are formed on an optical recording medium. A p±1 order diffracted beam which is not used for recording and reproducing information is focused away from the plurality of information recording layers and on the surface of the optical recording medium.
摘要:
Disclosed herein is a light irradiating device, optical pickup device with the same, and method of adjusting the light irradiating device. The light irradiating device has a light emitting device, a lens system and a secondary lens. The lens system narrows light emitted from the light emitting device to a predetermined diameter. The secondary lens is disposed between the light emitting device and the lens system. Each of the light emitting device and the secondary lens is fixed to an arbitrary position on the optical axis while allowing the light emitting device and the secondary lens to move independently along an optical axis. According to the present invention, the light irradiating device can obtain light use efficiency and a uniform light intensity distribution required for recording/reproducing of an optical information recording medium.
摘要:
An improved collimating lens for use in optical memories is disclosed which comprises a first surface for receiving the incident beam which is concave, and a second surface for emitting the outgoing beam which is convex and non-spherical, characterized in that the said lens satisifies some particular conditions. If the collimating lens of the present invention is used, the beam passing through the periphery of the lens can be concentrated, and therefore, the actual number of openings of the objective lens is increased, and at the same time, the coupling efficiency can be improved. Accordingly it is possible to form very tiny spot on the disc, and the transmission rate can also be improved. Further, the appearance of the lens can be favorably shaped when manufacturing the lens, because the lens of the present invention is strong against the difference of the axes.