Abstract:
An optical pickup device according to an embodiment of the present invention comprises a light source for projecting a beam of light to record and reproduce information with respect to an optical recording medium. A collimating lens is disposed on a path of the light to converge and convert the light into a parallel beam. An object lens condenses the parallel beam from the collimating lens and projects the parallel beam onto the optical recording medium. An optical element is disposed between the collimating lens and the object lens. A first actuator moves the collimating lens along the optical axis to thereby control a distance between the collimating lens and the optical element. A first controller drives the first actuator to find a position for the collimating lens, for reducing aberration generated in the light being projected to the optical recording medium. Accordingly, the aberration can be effectively prevented, thereby improving recording and reproducing performance of the optical pickup device.
Abstract:
An optical pickup and an optical recording and/or reproducing apparatus include a light source which emits light having a first wavelength, an objective lens that focuses incident light on an information storage medium and is optimized for a first information storage medium of a predetermined standard, a polarization changer which changes the light with the first wavelength incident from the light source into light beams with first and second polarizations that are orthogonal to each other, a polarization hologram element which has a varying refractive power according to the polarization of the light with the first wavelength that passes through the polarization changer, a photodetector which receives light after the light has been emitted from the light source, focused on the information storage medium by the objective lens, and reflected by the information storage medium, and an optical path changer which guides the light reflected by the information storage medium toward the photodetector, wherein the optical pickup can compatibly adopt the first information storage medium and a second information storage medium which has a different thickness from the first information storage medium.
Abstract:
An optical pick-up device is provided that reduces aberrations in light irradiated from an optical recording meidu. The device includes a light source that outputs light for recordation and reproduction of information onto the optical recording medium. An objective lens irradiates the light onto the optical recording medium by concentrating the light. An actuator adjusts the movement of the objective lens to focus the light on at least one or more layers of the optical recording medium. A controller moves the objective lens to substantially reduce the aberration occurring in the light irradiated from the optical recording medium by driving the actuator, such that aberrations, such as asymmetrical aberrations or coma aberrations, may be reduced and corrected.
Abstract:
An optical pick-up apparatus for reproducing information recorded on an optical recording medium or recording information on the optical recording medium is provided. The optical pick-up apparatus includes a light source unit which generates beams; a diffraction element which diffracts the generated beams; and an objective lens which focuses a p order diffracted beam which is used for recording and reproducing information among a plurality of diffracted beams which are diffracted by the diffraction element on any one of a plurality of information layers which are formed on an optical recording medium. A p±1 order diffracted beam which is not used for recording and reproducing information is focused away from the plurality of information recording layers and on the surface of the optical recording medium.
Abstract:
Provided is a display device. The display device includes a main body, a coupling portion, a first elevating member, a second elevating member, a guide unit, and a base. The main body receives a display module. The coupling portion is connected to a rear side of the main body. The first elevating member is coupled to the coupling portion. The second elevating member is rotatably coupled with respect to the first elevating member. The guide unit supports the first and second elevating members. The base supports the guide unit.
Abstract:
An optical pickup device is provided with a plurality of object lens corresponding to various kinds of optical discs having different recording densities, in which the structure of the optical pickup device is simplified and the size of the optical pickup device is minimized. The optical pickup device comprises a bobbin including an upper surface, at which first and second object lenses are mounted, an opened lower surface, and a first and second side surfaces supported by a supporting unit, the first and second side surfaces being opposite to each other, a first focus coil and a first tracking coil mounted at a third side surface of the bobbin, a second focus coil and a second tracking coil mounted at a fourth side surface of the bobbin, which is opposite to the third side surface, and magnets disposed opposite to the first and second focus coils and the first and second tracking coils.
Abstract:
A unit to remove crosstalk in a multi-layered disk, an optical pickup including the unit, and an optical recording and/or reproducing apparatus including the optical pickup, of which the optical pickup includes: a light source; an optical path changer to change the path of light emitted from the light source; a unit to remove crosstalk; an objective lens to focus incident light on a disk; and a photodetector detecting light reflected by the disk such that the unit to remove crosstalk separates light reflected by a target recording layer of the disk from light reflected by adjacent recording layers so that the light reflected by the target recording layer and the light reflected by the adjacent recording layers do not overlap on the photodetector.
Abstract:
A unit to remove crosstalk in a multi-layered disk, an optical pickup including the unit, and an optical recording and/or reproducing apparatus including the optical pickup, of which the optical pickup includes: a light source; an optical path changer to change the path of light emitted from the light source; a unit to remove crosstalk; an objective lens to focus incident light on a disk; and a photodetector detecting light reflected by the disk such that the unit to remove crosstalk separates light reflected by a target recording layer of the disk from light reflected by adjacent recording layers so that the light reflected by the target recording layer and the light reflected by the adjacent recording layers do not overlap on the photodetector.
Abstract:
An optical pickup device according to an embodiment of the present invention comprises a light source for projecting a beam of light to record and reproduce information with respect to an optical recording medium. A collimating lens is disposed on a path of the light to converge and convert the light into a parallel beam. An object lens condenses the parallel beam from the collimating lens and projects the parallel beam onto the optical recording medium. An optical element is disposed between the collimating lens and the object lens. A first actuator moves the collimating lens along the optical axis to thereby control a distance between the collimating lens and the optical element. A first controller drives the first actuator to find a position for the collimating lens, for reducing aberration generated in the light being projected to the optical recording medium. Accordingly, the aberration can be effectively prevented, thereby improving recording and reproducing performance of the optical pickup device.
Abstract:
Disclosed is an optical pickup. The optical pickup comprises an optical disc; a first light source having an astigmatic difference and emitting a first laser beam of a first predetermined wavelength; a second light source emitting a second laser beam of a second predetermined wavelength which is different from the first predetermined wavelength; a first beam splitter arranged on a path of the first laser beam for reflecting the first laser beam; a second beam splitter disposed at one side of the first beam splitter such that it has a predetermined sloping angle, for reflecting the second laser beam toward the optical disc and for generating an astigmatism which can offset the astigmatic difference of the first light source when the first laser beam passes therethrough; a reflecting mirror for totally reflecting the second laser beam which is reflected by the second beam splitter and the first laser beam which passes through the second beam splitter; a collimator lens for shaping the laser beams reflected by the reflecting mirror into parallel lights; an objective lens for spotting the parallel light beams shaped by the collimator lens onto the optical disc; and a photodiode arranged at the other side of the first beam splitter for detecting an error signal from the laser beams which are spotted and reflected onto and from the optical disc.