摘要:
There is provided an evanescent wave multimode optical waveguide sensitive to a chemical species or to a physical parameter. The optical waveguide comprises a core and a cladding having a cladding refractive index lower than that of the core for guiding light to be propagated in the optical waveguide. The cladding defines with the core an optical waveguide providing mode coupling. A chemical indicator is provided in the cladding for causing a variation of the optical absorption of the cladding as a function of the chemical species or the physical parameter. The cladding is interrogated by the evanescent wave of the propagated light. The mode coupling causes unabsorbed light power to be redistributed among the multiple modes while light propagates along the optical waveguide.
摘要:
There is provided an evanescent wave multimode optical waveguide sensitive to a chemical species or to a physical parameter. The optical waveguide comprises a core and a cladding having a cladding refractive index lower than that of the core for guiding light to be propagated in the optical waveguide. The cladding defines with the core an optical waveguide providing mode coupling. A chemical indicator is provided in the cladding for causing a variation of the optical absorption of the cladding as a function of the chemical species or the physical parameter. The cladding is interrogated by the evanescent wave of the propagated light. The mode coupling causes unabsorbed light power to be redistributed among the multiple modes while light propagates along the optical waveguide.
摘要:
An optical fiber polarimetric chemical sensor for capillary gas chromatography in which a sample fluid is injected into a capillary in the form of a periodic pulse train. Each individual pulse defines a moving polarization coupling zone that affects the polarization state of the light propagating in a birefringent optical waveguide that includes the capillary. The spacing between consecutive coupling zones can be made equal to the polarization beat length of the waveguide when the injection frequency of the pulses is properly selected, thus defining a resonance condition for a given analyte. The contributions of the successive coupling zones present along the length of the capillary then add up in phase, thus resulting in a detected optical signal having an enhanced amplitude peak at the injection frequency. In this manner, the sensitivity can be enhanced.
摘要:
There is provided an evanescent wave multimode optical waveguide sensitive to a chemical species or to a physical parameter. The optical waveguide comprises a core and a cladding having a cladding refractive index lower than that of the core for guiding light to be propagated in the optical waveguide. The cladding defines with the core an optical waveguide providing mode coupling. A chemical indicator is provided in the cladding for causing a variation of the optical absorption of the cladding as a function of the chemical species or the physical parameter. The cladding is interrogated by the evanescent wave of the propagated light. The mode coupling causes unabsorbed light power to be redistributed among the multiple modes while light propagates along the optical waveguide.
摘要:
The invention relates to distributed optical waveguide polarimetric chemical analysis. Real-time monitoring of a separation process of a fluid in a capillary column is provided using a distributed sensor comprising a birefringent optical waveguide placed between two polarizers. The optical waveguide has a longitudinal channel defined by a channel surface in its cladding and adapted to receive the fluid such that it travels in said longitudinal channel. The longitudinal channel is positioned with respect to the core such that channel surface absorption of the fluid traveling in the longitudinal channel causes a local variation of the orientation of the polarization axes of the optical waveguide. The proposed embodiment can be used for monitoring the velocity of the separated components along the channel.
摘要:
A process for making a custom phase-conjugated circular mirror to be used in a laser resonator that will suit specifications of a user is provided. The mirror reverses wavefront of one particular input beam .PSI..sub.o (x) determined by the user, the input beam .PSI..sub.o (x) having a given wavelength, the laser resonator including the mirror and an output coupler cooperating with the mirror and separated therefrom by a laser gain medium, the mirror being at a distance L from the output coupler. The process comprises steps of (a) determining the input beam .PSI..sub.o (x) that will suit need of the user; (b) calculating equation of .PSI..sub.L (x) which is a value of the input beam .PSI..sub.o (x) that is propagated through said laser gain medium at distance L; (c) calculating phase .PHI..sub.o (x) of the input beam, which is a phase of the input beam .PSI..sub.o (x) at distance L, the phase .PHI..sub.o (x) determining profile of the custom phase-conjugated mirror; and (d) fabricating the custom phase-conjugated mirror according to the profile determined in step (c), whereby a custom phase-conjugated mirror can be provided to suit the specifications of the user. There is also provided a mirror made according to the above-mentioned method.
摘要:
The present invention relates to an apparatus and a method upon which the apparatus is based for direct optical measurement of first and second moments (variance) of two-dimensional continuous-wave optical beam irradiance distributions. The apparatus and method are based on an optical filter having a spatially-varying transmittance or reflectance profile described by a one-dimensional truncated parabolic function. The light power transmitted through or reflected by the optical filter is measured by a photodetector as the optical filter travels horizontally across the beam irradiance profile. The variance is obtained from the ratio of the peak signal given by the photodetector normalized to the signal corresponding to the total optical power of the unobstructed optical beam. The first moment in a fixed reference frame is given by the horizontal position of the region of peak transmittance/reflectance of the filter when the maximum signal is measured.
摘要:
An apparatus and method for analyzing a fluid with particle analytes, where the fluid is fed through a passageway within an optical fiber and excitation light is guided by the optical fiber across the passageway and intersects the fluid therein. The optical core is made multimode and is adapted to shape the excitation light with a uniform spatial illumination over a cross-section of the optical core and the passageway is configured relative to the optical core such that the particle analytes are exposed to substantially equal excitation light while circulating in the passageway.
摘要:
A method for manufacturing a polarization-maintaining optical fiber is provided. The method includes (a) making a fiber preform by providing in an over-cladding tube: a core rod having an inner core and a cladding surrounding the inner core; at least one stress-applying part (SAP) disposed adjacent to the core rod along an outer periphery of the cladding thereof and having a coefficient of thermal expansion different from that of the cladding; inner filler rods arranged along the outer periphery of the core rod at positions where the SAP is not disposed and having a coefficient of thermal expansion different from that of the SAP; and a plurality of outer filler rods arranged adjacent the over-cladding tube between the over-cladding tube and inner filler rods, SAP and core rod, and consisting of a same material as the over-cladding tube; and (b) drawing the fiber preform to obtain the optical fiber.
摘要:
Multi-cladding optical fibers to be used in the context of fiber amplifiers and fiber lasers are described herein. Embodiments of optical fibers include a rare-earth doped core into which the signal field is to be amplified. The doped core is surrounded by multiple claddings that guide the pump field to be absorbed by the reactive core material. The first cladding has a depressed refractive index to improve high-order mode bending losses without incurring significant fundamental mode bending losses.