摘要:
The present invention relates to a blood cell analyzer, a method, and a use of an infection marker parameter. The blood cell analyzer comprises a sample suction device used for aspirating a blood sample to be tested of a subject, a sample preparation device used for preparing a test sample containing a part of a blood sample to be tested, a hemolytic agent, and a staining agent for identifying nucleated red blood cells, an optical detection device used for detecting an test sample to obtain optical information, and a processor. The processor obtains from the optical information at least one leukocyte characteristic parameter of at least one target particle population in a test sample, obtains an infection marker parameter for evaluating an infection status of a subject on the basis of the at least one leukocyte characteristic parameter, and outputs the infection marker parameter.
摘要:
An optical measurement instrument is an integrated instrument that includes an optical cavity with a light source, a sample cuvette, and an optical sensor. The instrument can be used for taking measurements of organism concentration in one or more samples. Preferably, the instrument holds multiple, individually-loaded, independent fluid samples and determines bacteria concentration via a forward-scattering signal. The instrument can incorporate onboard incubation to promote bacterial growth in the samples such that, once a certain bacterial concentration is achieved, the higher concentration sample can be used with a mass spectrometer to identify the type of bacteria. The instrument and mass spectrometer can be a part of a network for medical diagnostic testing data where data is stored in a manner that is inherently untainted by patient identifiable information.
摘要:
Systems and methods for uniquely identifying fluid-phase products by endowing them with fingerprints composed of dispersed colloidal particles, and by reading out those fingerprints on demand using Total Holographic Characterization. A library of chemically inert colloidal particles is developed that can be dispersed into soft materials, the stoichiometry of the mixture encoding user-specified information, including information about the host material. Encoded information then can be recovered by high-speed analysis of holographic microscopy images of the dispersed particles. Specifically, holograms of individual colloidal spheres are analyzed with predictions of the theory of light scattering to measure each sphere's radius and refractive index, thereby building up the distribution of particle properties one particle at a time. A complete analysis of a colloidal fingerprint requires several thousand single-particle holograms and can be completed in ten minutes.
摘要:
A device for dark-field optical inspection of a substrate comprises: a light source for generating an incident beam that is projected onto an inspection zone of the substrate and that is capable of being reflected in the form of diffuse radiation; at least one first and one second collecting device; and a reflecting device for directing at least a portion of the diffuse radiation originating from a focal point of collection coincident with the inspection zone in the direction of the collecting devices, with a first and second reflective zone from which a first portion of the diffuse radiation is directed toward a first focal point, which is optically conjugated with the focal point of collection, and a second portion of the diffuse radiation is reflected toward a second focal point, which is optically conjugated with the collection focal point and distinct from the first focal point of detection.
摘要:
A detection system for a multilayer film is provided. The detection system for a multilayer film includes a light source device, a first image capture device, a second image capture device and an image processing device. The light source device projects a pair of parallel incident light to a transparent multilayer film obliquely. The pair of parallel incident light is projected onto the transparent multilayer film for producing and enabling a forward scattered light and a back scattered light to be projected therefrom. The first image capture device captures the back scattered light to produce a first image. The second image capture device captures the forward scattered light to produce a second image. The image processing device is coupled to the first image capture device and the second image capture device. The image processing device is used to compares and detect the differences between the second image and the first image.
摘要:
An apparatus comprises a detector, a pressure sensor and a processor. The detector is operable to detect light that is scattered by an aerosol that is associated with a pressure. The pressure sensor is operable to measure the pressure. The processor is coupled to the detector and to the pressure sensor, and is configured to receive at least a signal from the detector and the pressure sensor. The processor is further configured to use the received signals to calculate a volume of the first aerosol, and to output an output signal associated with the calculated volume. The various measurements can be repeated and compared, and the output signal can be a feedback signal for metering subsequent amounts of the aerosol, based on the comparison.
摘要:
Devices and methods for detecting particulate matter are described herein. One device includes a laser, a reflector, an ellipsoidal reflector, and a detector, wherein the laser is configured to emit a beam, the reflector is configured to reflect the beam toward the ellipsoidal reflector, and the ellipsoidal reflector has a first focal region located on a path of the reflected beam, and a second focal region located at a surface of the detector.
摘要:
Provided is a dynamic light scattering type particle size distribution measuring apparatus 100 capable of accurately measure the particle sizes of a sample obtained from slurry or the like. The dynamic light scattering type particle size distribution measuring apparatus 100 is configured to include: a filter member 6 that is interposed between any adjacent two of a light source 4, a cell 2, and a photodetector 5 and attenuates light passing therethrough; and an information processing device 8 that measures a particle size distribution multiple times with time and combines particle size distributions obtained at respective times of measurement to thereby calculate the particle size distribution of the whole of portions of the sample introduced at the respective times of measurement. In addition, the filter member 6 is also configured to be changeable to one having a different attenuation level at every time of measurement.
摘要:
Microfluidic methods and systems for detecting levels of microorganisms via Mie forward light scattering. The systems and methods of the present invention can be customized so as to optionally maximize scatter from the particle immunoagglutination and minimize that of the sample matrix, e.g., via selection of parameters particle diameter d, wavelength of incident λ, and/or scatter angle θ. Methods feature providing beads conjugated with an antibody specific for the microorganism, mixing beads with a sample to form a first mixture; providing a control mixture; irradiating the mixtures with incident light; detecting forward light scattering scattered by the first mixture at a first angle with respect to the incident light and forward scattered light scattered by the control the same first angle with respect to the incident light; determining I and I0 from the light scattering; comparing I with I0; and determining a level of the microorganism.
摘要:
A device for detecting a state of a liquid droplet discharged from each of nozzles placed in one or more rows, includes a light emitting element to emit a light beam to the liquid droplet from a nozzle in question, and a pair of light receiving elements disposed on both sides of a beam diameter of the light beam via an optical axis to receive scattered light occurring from the liquid droplet for detecting a state of the discharged liquid droplet on the basis of the scattered light. Either of the pair of the light receiving elements is selected for receiving the scattered light from the liquid droplet discharged from the nozzle according to a positional relation between the nozzle and the pair of light receiving elements.