摘要:
Disclosed is a secondary battery including a cathode, an anode, a membrane and an electrolyte, wherein the cathode contains a mixture of a first cathode material defined herein and a second cathode material selected from the group consisting of a second-(a) cathode material defined herein and a second-(b) cathode material defined herein, and a combination thereof, wherein a mix ratio of the two cathode materials (first cathode material: second cathode material) is 50:50 to 90:10, and the membrane is an organic/inorganic composite porous membrane including (a) a polyolefin-based membrane substrate and (b) an active layer in which one or more areas selected from the group consisting of the surface of the substrate and a portion of pores of the substrate are coated with a mixture of inorganic particles and a binder polymer, wherein the active layer has a structure in which the inorganic particles are interconnected and fixed through a binder polymer and porous structures are formed by the interstitial volume between the inorganic particles.
摘要:
Disclosed is a cathode material comprising a mixture of an oxide powder (a) defined herein and an oxide powder (b) selected from the group consisting of an oxide powder (b1) defined herein and an oxide powder (b2) defined herein and a combination thereof wherein a mix ratio of the two oxide powders (oxide powder (a):oxide powder (b)) is 50:50 to 90:10. The cathode material uses a combination of an oxide powder (a) and 50% or less of an oxide powder (b) which can exert high capacity, high cycle stability, superior storage stability and high-temperature stability, thus advantageously exhibiting high energy density and realizing high capacity batteries.
摘要:
Disclosed herein is a method of locating a plurality of full cells constructed in a cathode/separator/anode structure, as basic units, on a separator sheet having a continuous length, further locating a unit electrode or a bi-cell on the separator sheet, and winding the full cells and unit electrode or the bi-cell to continuously manufacture a stacking/folding type electrode assembly constructed in a structure in which anodes are located at the outermost electrodes forming the outside of the electrode assembly, respectively, wherein the method including a step of continuously supplying a cathode sheet, an anode sheet, a first separator sheet, and a second separator sheet, to manufacture the unit cells, successively arranging the unit cells on the second separator sheet from a first stage to an nth stage, and winding the unit cells, a step of arranging cathode tabs and anode tabs at the respective stages, while the cathode tabs and the anode tabs are opposite to each other, and arranging electrode tabs having the same polarity between the neighboring stages, while the electrode tabs are opposite to each other, such that the electrode tabs having the same polarity are located all together at predetermined positions of the wound electrode assembly, and a step of supplying electrodes the number of which is odd from two electrode sheets and electrodes the number of which is even from one electrode sheet.
摘要:
Disclosed herein is a method of locating a plurality of pull cells constructed in a cathode/separator/anode structure, as basic units, on a separator sheet having a continuous length, further locating a unit electrode or a bi-cell on the separator sheet, and winding the pull cells and unit electrode or the bi-cell to continuously manufacture a stacking/folding type electrode assembly constructed in a structure in which anodes are located at the outermost electrodes forming the outside of the electrode assembly, respectively, wherein the method including a step of continuously supplying a cathode sheet, an anode sheet, a first separator sheet, and a second separator sheet, to manufacture the unit cells, successively arranging the unit cells on the second separator sheet from a first stage to an n stage, and winding the unit cells, a step of arranging cathode tabs and anode tabs at the respective stages, while the cathode tabs and the anode tabs are opposite to each other, and arranging electrode tabs having the same polarity between the neighboring stages, while the electrode tabs are opposite to each other, such that the electrode tabs having the same polarity are located all together at predetermined positions of the wound electrode assembly, and a step of supplying electrodes the number of which is odd from two electrode sheets and electrodes the number of which is even from one electrode sheet.