摘要:
A fuel control system of an engine includes a simulation module and a control module. The simulation module generates a simulated pre-catalyst exhaust gas oxygen (EGO) sensor signal based on a simulated oxygen concentration of an exhaust gas. The simulation module determines a simulated pre-catalyst equivalence ratio (EQR) for the exhaust gas based on the simulated pre-catalyst EGO sensor signal. The control module generates a desired pre-catalyst EGO sensor signal based on a desired oxygen concentration of the exhaust gas. The control module determines a desired pre-catalyst EQR based on the desired pre-catalyst EGO sensor signal. The control module determines a cost function based on the simulated pre-catalyst EQR and the desired pre-catalyst EQR. The fuel control system is calibrated based on the cost function.
摘要:
A fuel control system of an engine includes a simulation module and a control module. The simulation module generates a simulated pre-catalyst exhaust gas oxygen (EGO) sensor signal based on a simulated oxygen concentration of an exhaust gas. The simulation module determines a simulated pre-catalyst equivalence ratio (EQR) for the exhaust gas based on the simulated pre-catalyst EGO sensor signal. The control module generates a desired pre-catalyst EGO sensor signal based on a desired oxygen concentration of the exhaust gas. The control module determines a desired pre-catalyst EQR based on the desired pre-catalyst EGO sensor signal. The control module determines a cost function based on the simulated pre-catalyst EQR and the desired pre-catalyst EQR. The fuel control system is calibrated based on the cost function.
摘要:
A fuel control system of an engine system comprises a pre-catalyst exhaust gas oxygen (EGO) sensor, a setpoint generator module, a sensor offset module, and a control module. The pre-catalyst EGO sensor generates a pre-catalyst EGO signal based on an air-fuel ratio of an exhaust gas. The setpoint generator module generates a desired pre-catalyst equivalence ratio (EQR) signal based on a desired EQR of the exhaust gas. The sensor offset module determines an offset value of the pre-catalyst EGO sensor. The control module generates an expected pre-catalyst EGO signal based on the desired pre-catalyst EQR signal and the offset value.
摘要:
A fuel control system of an engine system comprises a pre-catalyst exhaust gas oxygen (EGO) sensor, a setpoint generator module, a sensor offset module, and a control module. The pre-catalyst EGO sensor generates a pre-catalyst EGO signal based on an air-fuel ratio of an exhaust gas. The setpoint generator module generates a desired pre-catalyst equivalence ratio (EQR) signal based on a desired EQR of the exhaust gas. The sensor offset module determines an offset value of the pre-catalyst EGO sensor. The control module generates an expected pre-catalyst EGO signal based on the desired pre-catalyst EQR signal and the offset value.
摘要:
A control module and system includes a camshaft position module that determines a camshaft position change of a crankshaft. The control module also includes a cam phaser velocity module determines a cam phaser velocity based on the camshaft position change. A cam phaser velocity module determines a compensation factor based on the cam phaser velocity. A cam position compensation module generates a corrected cam position signal based on the compensation factor.
摘要:
A control module and system includes a camshaft position module that determines a camshaft position change of a crankshaft. The control module also includes a cam phaser velocity module determines a cam phaser velocity based on the camshaft position change. A cam phaser velocity module determines a compensation factor based on the cam phaser velocity. A cam position compensation module generates a corrected cam position signal based on the compensation factor.
摘要:
A battery state-of-charge (SOC) estimator uses a robust H∞ filter design by taking into account the battery parameter uncertainties, which is due to battery age, variation, and operating conditions such as temperature and SOC level. Each of the time-varying battery parameter values and their variation rates are bounded. By utilizing the parameter variation bounds and parameter variation rate bounds into the design process and minimizing the H∞ gain from the measured current signal to the estimation error of Voc, the battery SOC estimator can achieve enhanced robustness to the variations of battery age, variation, and operating conditions that include temperature and SOC level.
摘要:
A battery state-of-charge (SOC) estimator uses a robust H∞ filter design by taking into account the battery parameter uncertainties, which is due to battery age, variation, and operating conditions such as temperature and SOC level. Each of the time-varying battery parameter values and their variation rates are bounded. By utilizing the parameter variation bounds and parameter variation rate bounds into the design process and minimizing the H∞ gain from the measured current signal to the estimation error of Voc, the battery SOC estimator can achieve enhanced robustness to the variations of battery age, variation, and operating conditions that include temperature and SOC level.