Abstract:
A liquid crystal display device (100) includes: a liquid crystal layer (42) held between a pair of substrates (10, 30), the liquid crystal layer containing one or more types of positive liquid crystal compounds whose dielectric anisotropy is positive and one or more types of negative liquid crystal compounds whose dielectric anisotropy is negative, a total content of the positive liquid crystal compounds not being smaller than a total content of the negative liquid crystal compounds; a pixel electrode (24) provided in the pair of substrates, the pixel electrode having a plurality of linear portions and a slit; and a common electrode (22) insulated from the pixel electrode, wherein the pixel electrode and the common electrode apply across the liquid crystal layer a pixel voltage of positive polarity and a pixel voltage of negative polarity alternately at a frequency lower than 60 Hz.
Abstract:
A first photo-alignment film (12) of a liquid crystal display device (100) includes a first and a second pre-tilt region (12a, 12b) defining pre-tilt directions (PD1, PD2) that are anti-parallel to each other, and a second photo-alignment film (22) thereof includes a third and a fourth pre-tilt region (22a, 22b) defining pre-tilt directions (PD3, PD4) that are anti-parallel to each other. The entire boundary (BD1) between the first and second pre-tilt regions and the entire boundary (BD2) between the third and fourth pre-tilt regions are aligned with each other, as seen from the display plane normal direction. A pixel electrode (11) includes a first and a second cut-off portion (11a1, 11a2) provided by cutting off at least a part of a particular edge portion (11e1, 11e2) of the outer perimeter thereof.
Abstract:
The TFT substrate (10) of this liquid crystal display device (100) includes: a TFT (11) which is provided for each pixel; an upper electrode (12) which is electrically connected to the TFT's drain electrode (11d); a lower electrode (13) which is arranged under the upper electrode; and a dielectric layer (14) which is arranged between the upper and lower electrodes. Its counter substrate (20) includes a counter electrode (21) which faces the upper electrode. The upper electrode has first and second regions (R1, R2) which have mutually different electrode structures, and a third region (R3) which electrically connects the first and second regions to the drain electrode. The third region of the upper electrode includes a symmetrical connecting portion (12c) that is a conductive film pattern, of which the shape is substantially symmetrical with respect to a virtual line (L1) that splits each pixel into two adjacent regions in a row direction.
Abstract:
A liquid crystal display device (100) includes a liquid crystal layer (30) of a vertical alignment type, a first photo-alignment film (12), and a second photo-alignment film (22). The first photo-alignment film includes a first pre-tilt region (12a) and a second pre-tilt region (12b) defining pre-tilt directions (PD1, PD2) that are anti-parallel to each other. The second photo-alignment film includes a third pre-tilt region (22a) and a fourth pre-tilt region (22b) defining pre-tilt directions (PD3, PD4) that are anti-parallel to each other. The entire boundary (BD1) between the first pre-tilt region and the second pre-tilt region and the entire boundary (BD2) between the third pre-tilt region and the fourth pre-tilt region are aligned with each other, as seen from the display plane normal direction.
Abstract:
The TFT substrate (10) of this liquid crystal display device (100) includes: a TFT (11) which is provided for each pixel; an upper electrode (12) which is electrically connected to the TFT's drain electrode (11d); a lower electrode (13) which is arranged under the upper electrode; and a dielectric layer (14) which is arranged between the upper and lower electrodes. Its counter substrate (20) includes a counter electrode (21) which faces the upper electrode. The upper electrode has first and second regions (R1, R2) which have mutually different electrode structures, and a third region (R3) which electrically connects the first and second regions to the drain electrode. The third region of the upper electrode includes a symmetrical connecting portion (12c) that is a conductive film pattern, of which the shape is substantially symmetrical with respect to a virtual line (L1) that splits each pixel into two adjacent regions in a row direction.