摘要:
A method and system for detecting and modeling a catheter in a fluoroscopic image is disclosed. Catheter tip candidates and catheter body candidates are detected in the fluoroscopic image. One of a plurality of trained shape models is fitted to the catheter tip candidates and the catheter body candidates in order to model a shape of the catheter in the fluoroscopic image.
摘要:
A method and system for detecting and modeling a catheter in a fluoroscopic image is disclosed. Catheter tip candidates and catheter body candidates are detected in the fluoroscopic image. One of a plurality of trained shape models is fitted to the catheter tip candidates and the catheter body candidates in order to model a shape of the catheter in the fluoroscopic image.
摘要:
A needle is enhanced in a medical diagnostic ultrasound image. The image intensities associated with a needle in an image are adaptively increased and/or enhanced by compounding from a plurality of ultrasound images. Filtering methods and probabilistic methods are used to locate possible needle locations. In one approach, possible needles are found in component frames that are acquired at the same time but at different beam orientations. The possible needles are associated with each other across the component frames and false detections are removed based on the associations. In one embodiment of needle detection in an ultrasound component frame, lines are found first. The lines are then searched to find possible needle segments. In another embodiment, data from different times may be used to find needle motion and differences from a reference, providing the features in additional to features from a single component frame for needle detection.
摘要:
Methods and Systems for training a learning based classifier and object detection in medical images is disclosed. In order to train a learning based classifier, positive training samples and negative training samples are generated based on annotated training images. Features for the positive training samples and the negative training samples are extracted. The features include an extended Haar feature set including tip features and corner features. A discriminative classifier is trained based on the extracted features.
摘要:
A method and system for tracking a needle in a fluoroscopic image sequence is disclosed. In order to track a needle in a fluoroscopic image sequence, the needle is initialized in a first frame of the fluoroscopic image sequence. Needle segments are detected in each subsequent frame of the fluoroscopic image sequence, and the needle is detected in each frame of the fluoroscopic image by tracking the needle from a previous frame of the fluoroscopic image sequence based on the detected needle segments in the current frame.
摘要:
A method and system for tracking a guidewire in a fluoroscopic image sequence is disclosed. In order to track a guidewire in a fluoroscopic image sequence, guidewire segments are detected in each frame of the fluoroscopic image sequence. The guidewire in each frame of the fluoroscopic image sequence is then detected by rigidly tracking the guidewire from a previous frame of the fluoroscopic image sequence based on the detected guidewire segments in the current frame. The guidewire is then non-rigidly deformed in each frame based on the guidewire position in the previous frame.
摘要:
A method and system for co-registration of angiography data and intra vascular ultrasound (IVUS) data is disclosed. A vessel branch is detected in an angiogram image. A sequence of IVUS images is received from an IVUS transducer while the IVUS transducer is being pulled back through the vessel branch. A fluoroscopic image sequence is received while the IVUS transducer is being pulled back through the vessel branch. The IVUS transducer and a guiding catheter tip are detected in each frame of the fluoroscopic image sequence. The IVUS transducer detected in each frame of the fluoroscopic image sequence is mapped to a respective location in the detected vessel branch of the angiogram image. Each of the IVUS images is registered to a respective location in the detected vessel branch of the angiogram image based on the mapped location of the IVUS transducer detected in a corresponding frame of the fluoroscopic image sequence.
摘要:
A method and system for extracting coronary vessels fluoroscopic image sequences using coronary digital subtraction angiography (DSA) are disclosed. A set of mask images of a coronary region is received, and a sequence of contrast images for the coronary region is received. For each contrast image, a motion estimate is calculated between each of the mask images and a background region of the contrast image and a covariance is calculated for each motion estimate. Multiple background layer predictions are generated by generating a background layer prediction for each mask image based on the calculated motion estimate and covariance. The multiple background layer estimates are combined using statistical fusion to generate a final estimated background layer. The final estimated background layer is subtracted from the contrast image to extract a coronary vessel layer for the contrast image.
摘要:
A method and system for detecting a curve structure in a 2D fluoroscopic image is disclosed. A plurality of curve segments are detected in the image. A graph is generated based on the detected curve segments. A curve structure is detected in the image by determining a path between a source node and a destination node in the graph. A hyper-graph can be constructed from the graph in order to impose geometric constraints on segments of the detected the curve structure, and the curve structure can be detected by finding a shortest path in the hyper-graph.
摘要:
A method and system for tracking a needle in a fluoroscopic image sequence is disclosed. In order to track a needle in a fluoroscopic image sequence, the needle is initialized in a first frame of the fluoroscopic image sequence. Needle segments are detected in each subsequent frame of the fluoroscopic image sequence, and the needle is detected in each frame of the fluoroscopic image by tracking the needle from a previous frame of the fluoroscopic image sequence based on the detected needle segments in the current frame.