摘要:
A discharging device is used to reduce the voltage level at a bootstrap point in an electronic circuit such as a shift register circuit. In such a circuit, a first transistor in a conducting state receives an input pulse and conveys it to the gate terminal of a second transistor, causing the second transistor to be in a conducting state. This gate terminal is known as a bootstrap point. After receiving the input pulse, an output pulse is produced at one drain/source terminal of the second transistor. During the time period of the output pulse, the first transistor is in a non-conducting state and the voltage level at the bootstrap point is high, imposing a stress upon the first transistor. A discharging circuit consisting of at least one transistor is coupled to the bootstrap point in order to reduce the voltage level at the output pulse period.
摘要:
A discharging device is used to reduce the voltage level at a bootstrap point in an electronic circuit such as a shift register circuit. In such a circuit, a first transistor in a conducting state receives an input pulse and conveys it to the gate terminal of a second transistor, causing the second transistor to be in a conducting state. This gate terminal is known as a bootstrap point. After receiving the input pulse, an output pulse is produced at one drain/source terminal of the second transistor. During the time period of the output pulse, the first transistor is in a non-conducting state and the voltage level at the bootstrap point is high, imposing a stress upon the first transistor. A discharging circuit consisting of at least one transistor is coupled to the bootstrap point in order to reduce the voltage level at the output pulse period.
摘要:
A tri-gate pixel structure includes three sub-pixel regions, three gate lines, a data line, three thin film transistors (TFTs), three pixel electrodes, and a common line. The gate lines are disposed along a first direction, and the data line is disposed along a second direction. The TFTs are disposed in the sub-pixel regions respectively, wherein each TFT has a gate electrode electrically connected to a corresponding gate line, a source electrode electrically connected to the data line, and a drain electrode. The three pixel electrodes are disposed in the three sub-pixel regions respectively, and each pixel electrode is electrically connected to the drain electrode of one TFT respectively. The common line crosses the gate lines and partially overlaps the three gate lines, and the common line and the three pixel electrodes are partially overlapped to respectively form three storage capacitors.
摘要:
A tri-gate pixel structure includes three sub-pixel regions, three gate lines, a data line, three thin film transistors (TFTs), three pixel electrodes, and a common line. The gate lines are disposed along a first direction, and the data line is disposed along a second direction. The TFTs are disposed in the sub-pixel regions respectively, wherein each TFT has a gate electrode electrically connected to a corresponding gate line, a source electrode electrically connected to the data line, and a drain electrode. The three pixel electrodes are disposed in the three sub-pixel regions respectively, and each pixel electrode is electrically connected to the drain electrode of one TFT respectively. The common line crosses the gate lines and partially overlaps the three gate lines, and the common line and the three pixel electrodes are partially overlapped to respectively form three storage capacitors.
摘要:
A liquid crystal display panel comprises a first substrate, a second substrate, a sealant, a liquid crystal layer, and a light-shielding layer, wherein the sealant is disposed between the first substrate and the second substrate; the liquid crystal layer is disposed among the first substrate, the second substrate and the sealant; and the light shielding layer is disposed on a surface of the first substrate but notin contact with the liquid crystal layer.
摘要:
A liquid crystal display (LCD) having a narrow cell gap is produced by a one-drop fill (ODF) process. Openings are formed in the protection layer on a thin film transistor (TFT) array substrate. These openings are located on the corresponding positions of photoresist spacers and a photoresist guard ring on a color filter substrate to receive the photoresist spacers and the photoresist guard ring and allow them to be in contact with the TFT array substrate. Therefore, the poor display quality problem caused by the photoresist spacers and the photoresist guard ring with uneven heights can be resolved.
摘要:
A liquid crystal display panel with reduced flicker comprises an active matrix substrate equipped with a plurality of thin film transistors. The active matrix substrate has an active area that is formed with a plurality of first signal lines and a plurality of second signal lines crossing each other. The active area includes a plurality of pixels arranged in a matrix. There are outer-lead bonding areas around the active area. There are a plurality of pad areas within the outer-lead bonding areas. A plurality of second wires arranged in a fan-out configuration extend from the pad areas and stretch toward the active area. The second wires are connected to their respective first signal lines by their serpentine or zigzag routes resulting in various wire lengths. A frame-like lead overlaps the second wires, and a capacitor exists between each of the second wires and the closed frame-like lead. The induced capacitor and the resistance of the corresponding second wire together result in a compensation effect so as to uniform the time constants of the plurality of first signal lines.
摘要:
A method for defining plural windows with different etching depths simultaneously is disclosed. The method includes steps of (a) forming a photoresist on a substrate having a multiple film structure thereon, (b) exposing a first region of the photoresist to a first exposure dose and a second region of the photoresist to a second exposure dose, (c) obtaining different remaining thickenesses of the photoresist on the first region and the second region by a development, and (d) etching the first region and the second region of the photoresist for forming the plural windows with different etching depths of the multiple film structure.
摘要:
A transparent conductive film includes a number of first transparent conductive stripes extending along a first direction and a number of second transparent conductive stripes extending along a second direction and intersecting the number of first transparent conductive stripes. The first conductive stripes are spaced from each other and extend substantially along a first direction. The second transparent conductive stripes are spaced from each other and extend substantially along a second direction. The first transparent conductive stripes are electrically connected with the second transparent conductive stripes. The first transparent conductive stripes and the second conductive stripes are arranged in patterns such that the transparent conductive film has an anisotropic impedance. The first direction is a low impedance direction. A resistivity of the transparent conductive film in the low impedance direction is smaller than the resistivity of the transparent conductive film in the second direction and any other direction.
摘要:
A display device and method having a sensing function is described. The device includes a liquid crystal display (LCD) panel and plural sense lines. The LCD panel includes a plurality of data lines and a plurality of gate lines. Each of the data lines is connected electrically to a plurality of left pixels and a plurality of right pixels. The sense line is disposed between each two adjacent data lines, and each of the sense lines is configured to be parallel to the data lines and perpendicular to the gate lines. The sense lines are used to transmit touch signals.