摘要:
Deinterlacing of video involves converting interlaced video to progressive video by interpolating a missing pixel in the interlaced video from other pixels in the video. A plurality of interpolants are provided, each of which interpolates a pixel value from other pixels that are nearby in space and/or time. The data costs of using the various interpolants is calculated. A particular one of the interpolants is chosen based on the data costs associated with the various interpolants. The chosen interpolant is used to interpolate the value of the missing pixel. The interpolated pixel value may be refined based on exemplars. The exemplars may be taken from the video that is being deinterlaced.
摘要:
Deinterlacing of video involves converting interlaced video to progressive video by interpolating a missing pixel in the interlaced video from other pixels in the video. A plurality of interpolants are provided, each of which interpolates a pixel value from other pixels that are nearby in space and/or time. The data costs of using the various interpolants is calculated. A particular one of the interpolants is chosen based on the data costs associated with the various interpolants. The chosen interpolant is used to interpolate the value of the missing pixel. The interpolated pixel value may be refined based on exemplars. The exemplars may be taken from the video that is being deinterlaced.
摘要:
An image comprising color pixels with varying illumination is selected. Instances of a repeating pattern in the image are determined. Illumination values for illuminated pixels at locations within instances of the repeating pattern are calculated based on pixel intensities of non-illuminated pixels at corresponding locations in other instances of the repeating pattern. The illumination variation is removed from the illuminated pixels based on the calculated illumination values to produce enhanced pixels. Color from the non-illuminated pixels at the corresponding locations in other instances of the repeating pattern is propagated to the enhanced pixels.
摘要:
An interactive segmentation framework for 3-D teeth CT volumetric data enables a user to segment an entire dental region or individual teeth depending upon the types of user input. Graph cuts-based interactive segmentation utilizes a user's scribbles which are collected on several 2-D representative CT slices and are expanded on those slices. Then, a 3-D distance transform is applied to the entire CT volume based on the expanded scribbles. Bony tissue enhancement is added before feeding 3-D CT raw image data into the graph cuts pipeline. The segmented teeth area is able to be directly utilized to reconstruct a 3-D virtual teeth model.
摘要:
Embodiments generally relate to summarizing a photo album in a social network system. In one embodiment, a method includes grouping photos into a plurality of groups of photos, and selecting a plurality of representative photos, where each representative photo represents a respective group from the plurality of groups, where the selecting is based on a quality score of each of the photos, and where each quality score is based on different types of attributes. The method also includes enabling the plurality of representative photos to be shared.
摘要:
Methods and systems disclosed herein provide the capability to automatically process digital pathology images quickly and accurately. According to one embodiment, an digital pathology image segmentation task may be divided into at least two parts. An image segmentation task may be carried out utilizing both bottom-up analysis to capture local definition of features and top-down analysis to use global information to eliminate false positives. In some embodiments, an image segmentation task is carried out using a “pseudo-bootstrapping” iterative technique to produce superior segmentation results. In some embodiments, the superior segmentation results produced by the pseudo-bootstrapping method are used as input in a second segmentation task that uses a combination of bottom-up and top-down analysis.
摘要:
A method for tracking objects includes identifying a target, identifying a plurality of auxiliary objects related to the target, and tracking the target using the plurality of auxiliary objects.
摘要:
A computing system for detecting objects in an image can perform operations including generating an image pyramid that includes a first level corresponding with the image at a first resolution and a second level corresponding with the image at a second resolution. The operations can include tiling the first level and the second level by dividing the first level into a first plurality of tiles and the second level into a second plurality of tiles; inputting the first plurality of tiles and the second plurality of tiles into a machine-learned object detection model; receiving, as an output of the machine-learned object detection model, object detection data that includes bounding boxes respectively defined with respect to individual ones of the first plurality of tiles and the second plurality of tiles; and generating image object detection output by mapping the object detection data onto an image space of the image.
摘要:
An integrated interactive segmentation with spatial constraint method utilizes a combination of several of the most popular online learning algorithms into one and implements a spatial constraint which defines a valid mask local to the user's given marks. Additionally, both supervised learning and statistical analysis are integrated, which are able to compensate each other. Once prediction and activation are obtained, pixel-wised multiplication is conducted to fully indicate how likely each pixel belongs to the foreground or background.
摘要:
An interactive segmentation framework for 3-D teeth CT volumetric data enables a user to segment an entire dental region or individual teeth depending upon the types of user input. Graph cuts-based interactive segmentation utilizes a user's scribbles which are collected on several 2-D representative CT slices and are expanded on those slices. Then, a 3-D distance transform is applied to the entire CT volume based on the expanded scribbles. Bony tissue enhancement is added before feeding 3-D CT raw image data into the graph cuts pipeline. The segmented teeth area is able to be directly utilized to reconstruct a 3-D virtual teeth model.