Abstract:
An OLED device includes a power detection unit for detecting a power detection signal when turning on, a test image generation unit for generating a test image signal when a selection unit selects the test image signal to transmit according to the power detection signal and a timing control unit drives an OLED panel according to the test image signal, a current-adjusting unit for adjusting and holding real-time current complying with a predetermined current if the current-adjusting unit detects that the real-time current of the OLED panel is lower than the predetermined current, and a normal image signal input terminal for inputting normal image signal to control the selection unit to transmit the normal image signal, and then the OLED panel displays a normal image according to normal image signal from the timing control unit and the hold real-time current complying with the predetermined current provided by the current-adjusting unit.
Abstract:
A method for driving a display device includes: dividing static frames displayed by the display device into a first frame and a second frame, which comprises a first sub-frame and a second sub-frame; outputting grey-scale images during the display period of the first frame and the first sub-frame; outputting dark state images during the display period of the second sub-frame, where the length of the display period of the second sub-frame is proportional to that of the static frames. The present invention also proposes a display device using the method. The brightness of the display device can be dynamically adjusted, preventing the device from operating in high brightness for a long period of time, and prolonging its lifespan.
Abstract:
An OLED data compensation circuit and method, and an OLED display device are disclosed. The OLED data compensation circuit includes: a sensing circuit for detecting a drifting amount of a threshold voltage of thin film transistors (TFTs); a timing controller connected with the sensing circuit for receiving the drifting amount, and outputting voltage control signals and source driving signals, which controlling a voltage of data signals outputted by a source driver; a reference voltage output circuit connected with the timing controller, is configured for outputting a first reference voltage in accordance with the voltage control signals, the voltage of the data signals and the first reference voltage are configured for compensating the drifting amount of the threshold voltage of the driving TFTs to compensate data of the OLED. In this way, the OLED data compensation is not limited only by the source driver, the OLED data compensation may be enhanced.
Abstract:
A method for controlling brightness of an OLED panel when booting. The method includes steps of: obtaining a brightness to be displayed corresponding to each pixel in a booting process; comparing the brightness to be displayed of each pixel with a preset brightness threshold; if the brightness to be displayed is greater than the brightness threshold, adjusting the brightness to be displayed to be less than or equal to the brightness threshold; using the brightness to be displayed after adjusting to adjust a grayscale value to be displayed of the pixel; using the grayscale value to be displayed to control a corresponding pixel to perform a display; gradually increasing the brightness threshold with time, and returning to the step of obtaining a brightness to be displayed corresponding to each pixel in a booting process. The present invention can reduce the probability of the image sticking and the speed of ageing.
Abstract:
The present invention discloses a display panel and the driving method thereof. It divides the pixel electrodes of the display panel into multiple groups according to the light color allowed passing through. That is, each said pixel electrode allows the light with the same color to pass through; during one frame display, the data driver applies independent Gamma voltage to each said pixel electrode. After the gate driver drives the gate line connected with a group of the pixel electrodes, it drives the gate line connected with next group of the pixel electrodes in sequence, so that it can independently adjust the Gamma voltage applied to the pixels with different colors.
Abstract:
An OLED display device includes a display screen, a sensor, and a timing controller. The timing controller includes a detection unit, a test image generation unit, a data compensation unit, and image control unit. The detection unit provides a command for generating a test image. The test image generation unit generates a test image according to the command. The data compensation unit receives a decayed signal that corresponds to the test image and is detected by the sensor in order to generate a compensation signal according to the decayed signal. In response to the compensation signal, the image control unit compensates an external image to achieve normal displaying of the external image on the display screen.
Abstract:
An OLED display device includes a display screen, a sensor, and a timing controller. The timing controller includes a detection unit, a test image generation unit, a data compensation unit, and image control unit. The detection unit provides a command for generating a test image. The test image generation unit generates a test image according to the command. The data compensation unit receives a decayed signal that corresponds to the test image and is detected by the sensor in order to generate a compensation signal according to the decayed signal. In response to the compensation signal, the image control unit compensates an external image to achieve normal displaying of the external image on the display screen.
Abstract:
The disclosure discloses an AMOLED driving circuit and a display device. The driving circuit includes a pixel circuit, a digital driving circuit, and a detection circuit. The pixel circuit includes a data cable and a first switch element. The data cable and the first switch element are coupled. The digital driving circuit is coupled with the data cable, configured to provide a digital voltage signal to the pixel circuit by the data cable. The detection circuit is coupled with the data cable, configured to receive and output the current fed back from the data cable and flowing through the first switch element. The current is configured to compensate a threshold voltage of the first switch element. According to the manner above, embodiments provided by the disclosure can enhance the display effect of the AMOLED.
Abstract:
A method of reducing the power consumption of the display panels includes: obtaining a brightness of each of pixels of an image to be displayed on the display panel; calculating an average brightness of the image in accordance with the brightness of each of the pixels of the image; obtaining a brightness adjustment coefficient in accordance with the average brightness; decreasing the brightness of each of the pixels of the image in accordance with the brightness adjustment coefficient; and enhancing a contrastness between the pixels of the image in accordance with the brightness adjustment coefficient. In addition, a system of reducing the power consumption of the display panels is also disclosed. In this way, the power consumption of the display panel may be reduced, and the contrastness of the displayed image may be enhanced.
Abstract:
The disclosure is related to a naked eye three-dimensional display panel and an overdriving method. The overdriving method comprises: obtaining target voltages and overdriving voltages of driving electrodes; searching overdriving periods corresponding to the target voltages and the driving voltages in a preset look-up table, wherein mapping relations for different values of the target voltages, the overdriving voltages and the overdriving periods are stored in the preset look-up table; generating overdriving signals according to the obtained target voltages, the obtained driving voltages and the searched overdriving periods; and driving the liquid crystal prism. The disclosure can avoid the issues of insufficient overdriving and excessive overdriving and the naked eye three-dimensional displaying effect using the overdriving technology can be assured.