摘要:
The monolithic ceramic electronic component includes a first external electrode 5, a second external electrode 6, and a ceramic sintered compact 4 including internal electrodes 2 and 3, the first and second external electrodes 5 and 6 being disposed on both end faces 4a and 4b of the ceramic sintered compact 4. The first and second external electrodes 5 and 6 have a multilayer structure in which sintered electrode layers 5a and 6a, intermediate electroplated layers 5b and 6b, and plated layers 5c and 6c are arranged in that order. Exposed surface regions 7a of insulating oxides 7 are exposed from the outer faces of the sintered electrode layers 5a and 6a, the oxides 7 being derived from a glass frit contained in the sintered electrode layers. Metals 8 are deposited on the exposed surface regions 7a and the intermediate electroplated layers 5b and 6b are then formed by electroplating.
摘要:
The monolithic ceramic electronic component includes a first external electrode 5, a second external electrode 6, and a ceramic sintered compact 4 including internal electrodes 2 and 3, the first and second external electrodes 5 and 6 being disposed on both end faces 4a and 4b of the ceramic sintered compact 4. The first and second external electrodes 5 and 6 have a multilayer structure in which sintered electrode layers 5a and 6a, intermediate electroplated layers 5b and 6b, and plated layers 5c and 6c are arranged in that order. Exposed surface regions 7a of insulating oxides 7 are exposed from the outer faces of the sintered electrode layers 5a and 6a, the oxides 7 being derived from a glass frit contained in the sintered electrode layers. Metals 8 are deposited on the exposed surface regions 7a and the intermediate electroplated layers 5b and 6b are then formed by electroplating.
摘要:
An output signal cutting-off circuit includes a first switching element, a driving circuit and a voltage-drop-signal generating circuit. When a voltage to be monitored becomes lower than a threshold voltage, a voltage-drop-signal is generated and supplied to the driving circuit. The driving circuit turns on the first switching element based on the voltage-drop-signal to thereby cut off an output signal voltage by bringing it to a ground potential. When the voltage-drop-signal disappears, the first switching element is turned off to bring the output signal to a normal state. Preferably, a second switching element for charging a capacitor and a third switching element for discharging the capacitor are used in the driving circuit. In this case, the first switching element is turned on or off based on a voltage of the capacitor.
摘要:
A physical quantity (e.g., acceleration) sensing unit is provided. In this unit, a capacitive sensor has first and second fixed electrodes and a physical-quantity-sensitive movable electrode disposed between the first and second fixed electrodes. An adjusting circuit first adjusts a first bias voltage applied between the first fixed electrode and the movable electrode and a second voltage applied between the movable electrode and the second fixed electrode so that the movable electrode is brought into contact with either the first or second fixed electrode. The adjusting circuit then adjusts the first and second bias voltages to return the movable electrode to its original position. A detecting circuit detects an output on a capacitance relationship among the first and second fixed electrodes and the movable electrode. The output is subjected to determination of whether or not the output is out of order, when tested.
摘要:
An output signal cutting-off circuit includes a first switching element, a driving circuit and a voltage-drop-signal generating circuit. When a voltage to be monitored becomes lower than a threshold voltage, a voltage-drop-signal is generated and supplied to the driving circuit. The driving circuit turns on the first switching element based on the voltage-drop-signal to thereby cut off an output signal voltage by bringing it to a ground potential. When the voltage-drop-signal disappears, the first switching element is turned off to bring the output signal to a normal state. Preferably, a second switching element for charging a capacitor and a third switching element for discharging the capacitor are used in the driving circuit. In this case, the first switching element is turned on or off based on a voltage of the capacitor.
摘要:
An ultrasonic sensor includes a transmitting device, a receiving device, and a circuit device. The circuit device determines that the receiving device receives an ultrasonic wave reflected from an object, when an output voltage of the receiving device is equal to or greater than a first threshold. The circuit device includes a humidity detection section configured to detect an ambient humidity of the transmitting and receiving devices and a threshold adjustment section configured to calculate, based on the detected ambient humidity, a sound pressure of the ultrasonic wave that is received by the receiving device after propagating over a round-trip distance between the ultrasonic sensor and the object. The threshold adjustment section reduces the first threshold, when the output voltage corresponding to the calculated sound pressure is less than a second threshold that is greater the first threshold.
摘要:
An ultrasonic sensor includes a transmitting device, receiving devices arranged in an array, and a circuit device. One receiving device is configured as a reference receiving device. The circuit device includes a reference signal generator and first and second synchronous detectors. The reference signal generator generates a reference signal by using a received signal of the reference receiving device. The first synchronous detector performs synchronous detection of a received signal of one of the receiving devices based on the reference signal to detect a distance to an object. The second synchronous detector performs synchronous detection of received signals of the receiving devices except the reference receiving device based on the reference signal to detect a direction of the object.
摘要:
A physical quantity (e.g., acceleration) sensing unit is provided in this unit, a capacitive sensor has first and second fixed electrodes and a physical-quantity-sensitive movable electrode disposed between the first and second fixed electrodes. An adjusting circuit first adjusts a first bias voltage applied between the first fixed electrode and the movable electrode and a second voltage applied between the movable electrode and the second fixed electrode so that the movable electrode is brought into contact with either the first or second fixed electrode. The adjusting circuit then adjusts the first and second bias voltages to return the movable electrode to its original position. A detecting circuit detects an output on a capacitance relationship among the first and second fixed electrodes and the movable electrode. The output is subjected to determination of whether or not the output is out of order, when tested.
摘要:
A substrate forming a sensor element is connected to a non-inverting input terminal of an operational amplifier, and a common voltage is applied thereto from a reference voltage supply circuit to fix them to the same potential. Thus, the impedances of the non-inverting input terminal and of the inverting input terminal of the operational amplifier are matched with respect to the power source. Therefore, noise superposed on a power source line can be greatly decreased by noise-removing characteristics determined by CMRR characteristics of the operational amplifier. As a result, a capacitive-type acceleration sensor exhibits sensor characteristics of frequency noise suppressing effect.
摘要:
In a capacitive physical quantity sensor, a C-V converter converts a variation in a capacitance between a movable electrode and a fixed electrode into a voltage to output the converted voltage in a first operating mode. The C-V converter also outputs a constant voltage in a second operating mode. An amplifier amplifies the converted voltage to output a first voltage, and amplifies the constant voltage to output a second voltage. A first sample and hold circuit operates in the first operating mode to sample and hold the first voltage. A second sample and hold circuit operates in the second operating mode to sample and hold the second voltage. A first differential amplifier obtains a difference voltage between the first voltage held by the first sample and hold circuit and the second voltage held by the second sample and hold circuit.