摘要:
It was found that normal human stem cells produce a regulated non-processive telomerase activity, while cancer cells produce a processive telomerase activity. Nucleotide analogs, such as 7-deaza-2'-deoxyquanosine-5'-triphosphate (7-deaza-dGTP) were found to be substrates for processive telomerase and incorporated into telomeric sequence. The incorporation of this nucleotide subsequently affected the processivity of telomerase, converting processive telomerase to non-processive telomerase. The incorporation of this nucleotide analogs was also found to inhibit formation of G-quartets by telomeric sequence. Other methods for converting cancer processive telomerase to the more benign non-processive telomerase include partially cleaving the telomerase RNA. The nucleoside analogs were found to be capable of a variety of activities including mediating allosteric-like inhibition of telomerase, premature termination and shortening of telomeric DNA, destabilization of telomeric structure and function and eventually cell death. Understanding the mechanisms of telomerase modulation by the 7-deazanucleotides has allowed the design of new telomerase inhibitors, modulators and agents for affecting telomere structure and function. These discoveries have application in the treatment of cancer.
摘要:
It was found that normal human stem cells produce a regulated non-processive telomerase activity, while cancer cells produce a processive telomerase activity. Nucleotide analogs, such as 7-deaza-2′-deoxyquanosine-5′-triphosphate (7-deaza-dGTP) were found to be substrates for processive telomerase and incorporated into telomeric sequence. The incorporation of this nucleotide subsequently affected the processivity of telomerase, converting processive telomerase to non-processive telomerase. The incorporation of this nucleotide analogs was also found to inhibit formation of G-quartets by telomeric sequence. Other methods for converting cancer processive telomerase to the more benign non-processive telomerase include partially cleaving the telomerase RNA. The nucleoside analogs were found to be capable of a variety of activities including mediating allosteric-like inhibition of telomerase, premature termination and shortening of telomeric DNA, destabilization of telomeric structure and function and eventually cell death. Understanding the mechanisms of telomerase modulation by the 7-deaza-nucleotides has allowed the design of new telomerase inhibitors, modulators and agents for affecting telomere structure and function. These discoveries have application in the treatment of cancer.
摘要:
It was found that normal human stem cells produce a regulated non-processive telomerase activity, while cancer cells produce a processive telomerase activity. Nucleotide analogs, such as 7-deaza-2'-deoxyquanosine-5'-triphosphate (7-deaza-dGTP) were found to be substrates for processive telomerase and incorporated into telomeric sequence. The incorporation of this nucleotide subsequently affected the processivity of telomerase, converting processive telomerase to non-processive telomerase. The incorporation of this nucleotide analogs was also found to inhibit formation of G-quartets by telomeric sequence. Other methods for converting cancer processive telomerase to the more benign non-processive telomerase include partially cleaving the telomerase RNA. The nucleoside analogs were found to be capable of a variety of activities including mediating allosteric-like inhibition of telomerase, premature termination and shortening of telomeric DNA, destabilization of telomeric structure and function and eventually cell death. Understanding the mechanisms of telomerase modulation by the 7-deaza-nucleotides has allowed the design of new telomerase inhibitors, modulators and agents for affecting telomere structure and function. These discoveries have application in the treatment of cancer.
摘要:
Improved telomerase activity assays are provided in which a ligation sequential reaction (LSR) or BrdUTP are used to identify a telomerase specific product. These assays are useful in diagnosing various cancers and determining the clinical prospects for cancer patients. In addition, the assays can be used to screen for substances that interfere with telomerase activity.
摘要:
Tumor growth and metastasis can be inhibited by administration of adenosine A1 and/or A3 antagonists, preferably A3 antagonists, to a patient. The antagonists can be, and preferably are, administered in combination with other anti-tumor agents, such as anti-angiogenic agents (including adenosine A2a antagonists) and/or cytotoxic agents. Because the cytotoxic agents attack the tumor cells themselves, and the anti-angiogenic agents prevent the growth of vasculature which would otherwise support the growth of the tumor cells.
摘要:
The present invention discloses the use of high affinity adenosine A3 receptor antagonists for enhancing chemotherapeutic treatment of cancers expressing adenosine A3 receptors and cancers expressing P-glycoprotein or MRP. In preferred embodiments, adenosine A3 receptor antagonists are administered before or during administration of a taxane family, vinca alkaloid, camptothecin or antibiotic chemotherapeutic agent.
摘要翻译:本发明公开了高亲和力腺苷A 3 N 3受体拮抗剂用于增强表达腺苷A 3 N受体和表达P-糖蛋白或MRP的癌症的癌症的化学治疗的用途。 在优选的实施方案中,腺苷A 3受体拮抗剂在紫杉烷类家族,长春花生物碱,喜树碱或抗生素化学治疗剂施用之前或期间施用。
摘要:
The present invention provides novel bis-naphthalimides characterized by having a linker containing a heteroatom, their preparation, pharmaceutical compositions thereof, and various methods of using the bis-naphthalimides. Particularly preferred bis-naphthalimides have a linker of about 8-16 atoms where the heteroatom is oxygen, sulfur, sulfur oxide or sulfur dioxide. The bis-naphthalimides provided herein have exceptional DNA binding properties and demonstrate cytotoxicity in both in vitro and in vivo tumor models, in particular, against melanoma.
摘要:
The present invention discloses the use of high affinity adenosine A3 receptor antagonists for enhancing chemotherapeutic treatment of cancers expressing adenosine A3 receptors and cancers expressing P-glycoprotein or MRP. In preferred embodiments, adenosine A3 receptor antagonists are administered before or during administration of a taxane family, vinca alkaloid, camptothecin or antibiotic chemotherapeutic agent.
摘要:
The present invention provides novel bis-naphthalimides characterized by having a linker containing a heteroatom, their preparation, pharmaceutical compositions thereof, and various methods of using the bis-naphthalimides. Particularly preferred bis-naphthalimides have a linker of about 8-16 atoms where the heteroatom is oxygen, sulfur, sulfur oxide or sulfur dioxide. The bis-naphthalimides provided herein have exceptional DNA binding properties and demonstrate cytotoxicity in both in vitro and in vivo tumor models, in particular, against melanoma. Also provided a novel mono-naphthalimides linked to a DNA alkylating agent. These agents are shown to have conformational effects on double stranded DNA and to form covalent adducts after an extended incubation period.