摘要:
A device for preventing current-leakage is located between a transistor and a capacitor of a memory cell. The two terminals of the device for preventing current-leakage are respectively connected with a slave terminal of the transistor and an electric pole of the capacitor. The device for preventing current-leakage has at least two p-n junctions. The device for preventing current-leakage is a lateral silicon controlled rectifier, a diode for alternating current, or a silicon controlled rectifier. By utilizing the driving characteristic of the device for preventing current-leakage, electric charge stored in the capacitor hardly passes through the device for preventing current-leakage when the transistor is turned off to improve the current-leakage problem.
摘要:
A flash memory is provided. The flash memory features of having the select gate transistors to include two different channel structures, which are a recessed channel structure and a horizontal channel. Because of the design of the recessed channel structure, the space between the gate conductor lines, which are for interconnecting the select gates of the select gate transistors arranged on the same column, can be shortened. Therefore, the integration of the flash memory can be increased; and the process window of the STI process can be increased as well. In addition, at least one depletion-mode select gate transistor is at one side of the memory cell string. The select gate transistor of the depletion-mode is always turned on.
摘要:
A flash memory is provided. The flash memory features of having the select gate transistors to include two different channel structures, which are a recessed channel structure and a horizontal channel. Because of the design of the recessed channel structure, the space between the gate conductor lines, which are for interconnecting the select gates of the select gate transistors arranged on the same column, can be shortened. Therefore, the integration of the flash memory can be increased; and the process window of the STI process can be increased as well. In addition, at least one depletion-mode select gate transistor is at one side of the memory cell string. The select gate transistor of the depletion-mode is always turned on.
摘要:
A process using oxide supporter for manufacturing a capacitor lower electrode of a micron stacked DRAM is disclosed. First, form a stacked structure. Second, form a photoresist layer on an upper oxide layer and then etch them. Third, deposit a polysilicon layer onto the upper oxide layer and the nitride layer. Fourth, deposit a nitrogen oxide layer on the polysilicon layer and the upper oxide layer. Sixth, partially etch the nitrogen oxide layer, the polysilicon layer and the upper oxide layer to form a plurality of vias. Seventh, oxidize the polysilicon layer to form a plurality of silicon dioxides surround the vias. Eighth, etch the nitride layer, the dielectric layer and the lower oxide layer beneath the vias. Ninth, form a metal plate and a capacitor lower electrode in each of the vias. Tenth, etch the nitrogen oxide layer, the polysilicon layer, the nitride layer and the dielectric layer.
摘要:
A flash memory is provided. A sawtooth gate conductor line, which interconnects the select gates of the select gate transistors arranged on the same column is provided. The sawtooth gate conductor line, which is disposed on both distal ends of a memory cell string, increases the integration of the flash memory. The sawtooth gate conductor line results in select gate transistors having different select gate lengths and produces at least one depletion-mode select transistor at one side of the memory cell string. The select gate transistor of the depletion-mode is always turned on.
摘要:
A nonvolatile memory cell is provided. A semiconductor substrate is provided. A conducting layer and a spacer layer are sequentially disposed above the semiconductor substrate. At least a trench having a bottom and plural side surfaces is defined in the conducting layer and the spacer layer. A first oxide layer is formed at the bottom of the trench. A dielectric layer is formed on the first oxide layer, the spacer layer and the plural side surfaces of the trench. A first polysilicon layer is formed in the trench. And a first portion of the dielectric layer on the spacer layer is removed, so that a basic structure for the nonvolatile memory cell is formed.
摘要:
A nonvolatile memory cell is provided. A semiconductor substrate is provided. A conducting layer and a spacer layer are sequentially disposed above the semiconductor substrate. At least a trench having a bottom and plural side surfaces is defined in the conducting layer and the spacer layer. A first oxide layer is formed at the bottom of the trench. A dielectric layer is formed on the first oxide layer, the spacer layer and the plural side surfaces of the trench. A first polysilicon layer is formed in the trench. And a first portion of the dielectric layer on the spacer layer is removed, so that a basic structure for the nonvolatile memory cell is formed.
摘要:
The memory cell of the present invention has two independent storage regions embedded into two opposite sidewalls of the control gate respectively. In this way, the data storage can be more reliable. Other features of the present invention are that the thickness of the dielectric layers is different, and the two independent storage regions are formed on opposite bottom sides of the opening by the etching process and form a shape like a spacer. The advantage of the aforementioned method is that the fabricating process is simplified and the difficulty of self-alignment is reduced.
摘要:
In a manufacturing method of a non-volatile memory, a substrate is provided, and strip-shaped isolation structures are formed in the substrate. A first memory array including memory cell columns is formed on the substrate. Each memory cell column includes memory cells connected in series with one another, a source/drain region disposed in the substrate outside the memory cells, select transistors disposed between the source/drain region and the memory cells, control gate lines extending across the memory cell columns and in a second direction, and first select gate lines respectively connecting the select transistors in the second direction in series. First contacts are formed on the substrate at a side of the first memory array and arranged along the second direction. Each first contact connects the source/drain regions in every two adjacent active regions.
摘要:
A method for manufacturing a non-volatile memory is provided. An isolation structure is formed in a trench formed in a substrate. A portion of the isolation structure is removed to form a recess. A first dielectric layer and a first conductive layer are formed sequentially on the substrate. Bar-shaped cap layers are formed on the substrate. The first conductive layer not covered by the bar-shaped cap layers is removed to form first gate structures. A second dielectric layer is formed on the sidewalls of the first gate structures. A third dielectric layer is formed on the substrate between the first gate structures. A second conductive layer is formed on the third dielectric layer. The bar-shaped cap layers and a portion of the first conductive layer are removed to form second gate structures. A doped region is formed in the substrate at two sides of each of the second gate structures.