摘要:
A frequency domain transforming section transforms mixed signals observed by multiple sensors into mixed signals in the frequency domain, a complex vector generating section generates a complex vector by using the frequency-domain mixed signals, a normalizing section generates a normalized vector excluding frequency dependence of the complex vector, and a clustering section clusters the normalized vectors to generate clusters. Then, a separated signal generating section generates separated signals in the frequency domain by using information about the clusters and a time domain transforming section transforms the separated signals in the frequency domain into separated signals in the time domain.
摘要:
Observed signals x1(t) to xj(t) from a plurality of sensors disposed in two dimensions are subject to a short-time Fourier transform, from which signals X1(ω1) to X1(ωN), . . . XJ(ω1) to XJ(ωN) are derived. Using the independent component analysis process, separation matrices W(ω1) to W(ωN) are produced. Their inverse matrices H(ω1) to H(ωN) are calculated, and for each ωn (n=1, . . . , N), using a pair of elements from each column of H(ωn), Hji(ωn) and Hj′i(ωn), an angle {circumflex over (θ)}i,jj′(ωn)=cos−1(arg(|Hji(ωn)/Hj′i(ωn))/(ωnc−1∥dj−dj′∥)) is calculated where arg(α) represents an argument of α, c the propagation velocity of a signal, and ∥dj−dj′∥ represents a spacing between sensors i and j′. Columns are permuted so that {circumflex over (θ)}i,jj′(ωn) obtained from each column of H(ω1) to H(ωN) assume an ascending order. For columns which cannot be permuted, the equation ∥qi−dj′∥/∥qi−dj∥=|Hji(ωn)/Hj′i(ωn)|=DRi,jj′(ωn) is solved for qi to calculate Ri,jj′(ωn)=∥DRi,jj′(ωn)·(dj−dj′)/(DR2i,jj′(ωn)−1)|. Columns of H(ωn) is permuted so that Ri,jj′(ωn) assume an ascending order. H(ωn) is used to solve the permutation problem of W(ω).
摘要:
Signals from a plurality of sources are observed by a plurality of sensors disposed in two dimensions, and the observed signals are subject to a short-time Fourier transform, from which frequency domain signals are derived. Using the independent component analysis process on the frequency domain signals, separation matrices are produced, and an inverse matrix of each separation matrix is calculated. The direction of each source is calculated based on a ratio of a pair of elements in each column of the inverse matrix.
摘要:
This invention achieves high-quality separation of mixed signals in situations where the relationship between the number of signal sources N and the number of sensors M is such that N>M. First, the values of the observed signal observed by M sensors are transformed into frequency domain values, and these frequency domain values are used to calculate the relative values of the observed values between the sensors at each frequency. These relative values are clustered into N clusters, and the representative value of each cluster is calculated. Then, using these representative values, a mask is produced to extract the values of the signals emitted by V (1≦V≦M) signal sources from the frequency-domain signal values, and this mask is used to extract the signal values emitted by V signal sources from these frequency-domain signal values. After that, if V=1 then the limited signal is output directly as a separated signal, while if V≧2 then the separated values are obtained from this limited signal by subjecting it to separation techniques such as ICA.
摘要:
A method and a device for signal separation. First, values of signals observed by M sensors are transformed into frequency domain values, and these frequency domain values are used to calculate relative values of the observed values between the sensors at each frequency. These relative values are clustered into N clusters, and the representative value of each cluster is calculated. Then, using these representative values, a mask is produced to extract the values of the signals emitted by V (1≦V≦M) signal sources from the frequency-domain signal values, and this mask is applied to the frequency-domain signal values. After that, if V=1 then the limited signal is output directly as a separated signal, while if V≧2 then the separated values are obtained by separating this limited signal with separation techniques such as ICA.
摘要:
A frequency domain transforming section 2 transforms mixed signals observed by multiple sensors into mixed signals in the frequency domain, a complex vector generating section 3 generates a complex vector by using the frequency-domain mixed signals, a normalizing section 4 generates a normalized vector excluding frequency dependence of the complex vector, and a clustering section 5 clusters the normalized vectors to generate clusters. Then, a separated signal generating section 6 generates separated signals in the frequency domain by using information about the clusters and a time domain transforming section 7 transforms the separated signals in the frequency domain into separated signals in the time domain.
摘要:
A polyether ester elastic fiber comprising a polyether ester elastomer containing polybutylene terephthalate as a hard segment and polyoxyethylene glycol as a soft segment and copolymerized with a specific metal organic sulfonate, having a coefficient of moisture absorption of not less than 5% at 35° C. and at a RH of 95% and a coefficient of water absorption extension of not less than 10%. The above-mentioned polyether ester elastic fiber has a good moisture-absorbing property, and is reversibly largely expanded or contracted by the absorption or release of water. Therefore, a fabric giving excellent comfortableness can be obtained from said elastic fibers, and can be recycled.
摘要:
A received signal vector x(n), a coefficient error covariance matrix P(n) from a memory part 12 and a forgetting factor .nu. from a memory part 13 are provided to a gain calculating part 14 to obtain a gain vector k(n). The thus obtained gain vector k(n) and an error e(n) between an echo and an echo replica are multiplied in a multiplying part 16. The multiplied output and a filter coefficient h(n) from a memory part 18 are added together to update the latter. The thus updated filter coefficient is used as the filter coefficient of an estimated echo path (an FIR filter, for example). The coefficient error covariance matrix P(n), the gain vector k(n), the received signal vector x(n) and the forgetting factor .nu. are provided to an updating part 19 to update the coefficient error covariance matrix P(n), and an adjustment matrix A representing an expectation of an impulse response variation of an echo path is added to the updated coefficient error covariance matrix P(n) and the added value is used as a new coefficient error covariance matrix P(n).
摘要:
A received input signal and an echo signal resulting from the passage of the received input signal through an echo path are both analyzed or divided into a plurality of common subbands. The received input signal in each subband is supplied to an estimated echo path provided in the subband, by which it is rendered into an echo replica signal. The echo replica signal is subtracted, by a subtractor provided in each subband, from the echo signal in the same subband as the echo replica signal to obtain a residual echo signal. The residual echo signals in the respective subbands are synthesized into a full-band residual echo signal. The estimated echo path in each subband is formed by a digital FIR filter and its filter coefficients are calculated by a coefficient calculation part in the subband, based on the received input signal, the residual echo signal and a step size matrix. The filter coefficients are iteratively updated so that the residual echo signal in each subband may be minimized. The step size matrix is used to define the step size of the filter coefficients and is determined by an acoustic field characteristics calculation part, based on the variation characteristics of an impulse response of the echo path in each subband.
摘要:
In a subband echo cancellation for a multichannel teleconference, received signals x1(k), x2(k), . . . , xI(k) of each channel are divided into N subband signals, an echo y(k) picked up by a microphone 16j after propagation over an echo path is divided into N subband signals y0(k), . . . ,yN−1(k), and vectors each composed of a time sequence of subband received signals x1(k), . . . , xI(k) are combined for each corresponding subband. The combined vector and an echo cancellation error signal in the corresponding subband are input into an estimation part 19n, wherein a cross-correlation variation component is extracted. The extracted component is used as an adjustment vector to iteratively adjust the impulse response of an estimated echo path. The combined vector is applied to an estimated echo path 18n formed by the adjusted value to obtain an echo replica. An echo cancellation error signal en(k) is calculated from the echo replica and a subband echo yn(k).