摘要:
A method for fabricating a semiconductor element according to the present disclosure includes the steps of: (A) forming a first silicon carbide semiconductor layer of a first conductivity type on a semiconductor substrate; (B) forming a first mask to define a body region on the first silicon carbide semiconductor layer; (C) forming a body implanted region of a second conductivity type in the first silicon carbide semiconductor layer using the first mask; (D) forming a sidewall on side surfaces of the first mask; (E) defining a dopant implanted region of the first conductivity type and a first body implanted region of the second conductivity type in the first silicon carbide semiconductor layer using the first mask and the sidewall; and (F) thermally treating the first silicon carbide semiconductor layer.
摘要:
This silicon carbide semiconductor element includes: a body region of a second conductivity type which is located on a drift layer of a first conductivity type; an impurity region of the first conductivity type which is located on the body region; a trench which runs through the body region and the impurity region to reach the drift layer; a gate insulating film which is arranged on surfaces of the trench; and a gate electrode which is arranged on the gate insulating film. The surfaces of the trench include a first side surface and a second side surface which is opposed to the first side surface. The concentration of a dopant of the second conductivity type is higher at least locally in a portion of the body region which is located beside the first side surface than in another portion of the body region which is located beside the second side surface.
摘要:
The semiconductor chip (18) of the present invention is a semiconductor chip (18) on which a power semiconductor device (10) is formed, and which includes a semiconductor substrate made from a hexagonal semiconductor, in which the semiconductor substrate has a shape of a rectangle on a principal surface, in which the rectangle is defined by two sides having lengths a and b equal to each other, and in which linear expansion coefficients in directions parallel to the two sides of the semiconductor substrate are equal to each other.
摘要:
As viewed along a normal to the principal surface of a substrate 101, this semiconductor element 100 has a unit cell region 100ul and a terminal region 100f located between the unit cell region and an edge of the semiconductor element. The terminal region 100f includes a ring region 103f of a second conductivity type which is arranged in a first silicon carbide semiconductor layer 102 so as to contact with a drift region 102d. The ring region includes a high concentration ring region 103af which contacts with the surface of the first silicon carbide semiconductor layer and a low concentration ring region 103bf which contains an impurity of the second conductivity type at a lower concentration than in the high concentration ring region and of which the bottom contacts with the first silicon carbide semiconductor layer. A side surface of the high concentration ring region 103af contacts with the drift region 102d. As viewed along a normal to the principal surface of the semiconductor substrate, the high concentration ring region and the low concentration ring region are identical in contour.
摘要:
The semiconductor chip (18) of the present invention is a semiconductor chip (18) on which a power semiconductor device (10) is formed, and which includes a semiconductor substrate made from a hexagonal semiconductor, in which the semiconductor substrate has a shape of a rectangle on a principal surface, in which the rectangle is defined by two sides having lengths a and b equal to each other, and in which linear expansion coefficients in directions parallel to the two sides of the semiconductor substrate are equal to each other.
摘要:
A semiconductor device includes: a semiconductor layer including silicon carbide, which has been formed on a substrate; a semiconductor region 15 of a first conductivity type defined on the surface of the semiconductor layer 10; a semiconductor region 14 of a second conductivity type, which is defined on the surface 10s of the semiconductor layer so as to surround the semiconductor region 15 of the first conductivity type; and a conductor 19 with a conductive surface 19s that contacts with the semiconductor regions 15 and 14 of the first and second conductivity types. On the surface 10s of the semiconductor layer, the semiconductor region 15 of the first conductivity type has at least one first strip portion 60 that runs along a first axis i. The width C1 of the semiconductor region 15 of the first conductivity type as measured along the first axis i is greater than the width A1 of the conductive surface 19s as measured along the first axis i. And the periphery of the conductive surface 19s crosses the at least one first strip portion 60, 61.
摘要:
A semiconductor device is fabricated on an off-cut semiconductor substrate 11. Each unit cell 10 thereof includes: a first semiconductor layer 12 on the surface of the substrate 11; a second semiconductor layer 16 stacked on the first semiconductor layer 12 to have an opening 16e that exposes first and second conductive regions 15 and 14 at least partially; a first conductor 19 located inside the opening 16e of the second semiconductor layer 16 and having a conductive surface 19s that contacts with the first and second conductive regions 15 and 14; and a second conductor 17 arranged on the second semiconductor layer 16 and having an opening 18e corresponding to the opening 16s of the second semiconductor layer 16. In a plane that is defined parallel to the surface of the substrate 11, the absolute value of a difference between the respective lengths of the second semiconductor layer 16 and the second conductor 18 as measured in the off-cut direction is greater than the absolute value of their difference as measured perpendicularly to the off-cut direction.
摘要:
A field-effect transistor power device includes a source electrode, a drain electrode, a wide gap semiconductor including a channel region and a drift region, the channel region and the drift region forming a series current path between the source electrode and the drain electrode, a gate insulating film that covers the channel region, and a gate electrode formed on the gate insulating film. In the series current path which is electrically conducting when the field-effect transistor power device is in an ON state, any region other than the channel region has an ON resistance exhibiting a positive temperature dependence, and the channel region has an ON resistance exhibiting a negative temperature dependence. A ratio ΔRon/Ron(−30° C.) is 50% or less.
摘要翻译:场效晶体管功率器件包括源电极,漏电极,包括沟道区和漂移区的宽间隙半导体,沟道区和漂移区在源电极和漏电极之间形成串联电流路径, 覆盖沟道区的栅极绝缘膜和形成在栅极绝缘膜上的栅电极。 在场效应晶体管功率器件处于导通状态时导通的串联电流路径中,通道区域以外的任何区域具有呈现正温度依赖性的导通电阻,并且沟道区域具有呈现出导通电阻 负温度依赖性。 比率&Dgr; Ron / Ron(-30℃)为50%以下。
摘要:
A semiconductor device according to this invention includes: two level shift switches (28A and 28B) each having first and second electrodes, a control electrode, a signal output electrode, and a first semiconductor region forming a transistor device section (28a,28b) which intervenes between the first electrode and the signal output electrode and is brought into or out of conduction according to a signal inputted to the control electrode and a resistor device section (Ra,Rb) which intervenes between the signal output electrode and the second electrode, the first semiconductor region comprising a wide bandgap semiconductor; and a diode (23) having a cathode-side electrode, an anode-side electrode, and a second semiconductor region comprising a wide bandgap semiconductor.
摘要:
In a semiconductor device of the present invention, the top surface of an n-type silicon carbide layer formed on a silicon carbide substrate is miscut from the (0001) plane in the direction. A gate electrode, a source electrode and other elements are arranged such that in a channel region, the dominating current flows along a miscut direction. In the present invention, a gate insulating film is formed and then heat treatment is performed in an atmosphere containing a group-V element. In this way, the interface state density at the interface between the silicon carbide layer and the gate insulating film is reduced. As a result, the electron mobility becomes higher in a miscut direction A than in the direction perpendicular to the miscut direction A.