摘要:
A semiconductor device includes a CAM cell array that stores the operation setting information as to the semiconductor device, a controller that controls read and write of the CAM cell array, a row decoder, and a column decoder. With this structure, different row addresses are allocated to respective functions of the operation setting information. Accordingly, stress is not caused in the CAM cell array of the unselected functions at the time of programming.
摘要:
A semiconductor device includes a CAM cell array that stores the operation setting information as to the semiconductor device, a controller that controls read and write of the CAM cell array, a row decoder, and a column decoder. With this structure, different row addresses are allocated to respective functions of the operation setting information. Accordingly, stress is not caused in the CAM cell array of the unselected functions at the time of programming.
摘要:
A semiconductor device includes a CAM cell array that stores the operation setting information as to the semiconductor device, a controller that controls read and write of the CAM cell array, a row decoder, and a column decoder. With this structure, different row addresses are allocated to respective functions of the operation setting information. Accordingly, stress is not caused in the CAM cell array of the unselected functions at the time of programming.
摘要:
A semiconductor device includes a CAM cell array that stores the operation setting information as to the semiconductor device, a controller that controls read and write of the CAM cell array, a row decoder, and a column decoder. With this structure, different row addresses are allocated to respective functions of the operation setting information. Accordingly, stress is not caused in the CAM cell array of the unselected functions at the time of programming.
摘要:
A semiconductor device includes a CAM cell array that stores the operation setting information as to the semiconductor device, a controller that controls read and write of the CAM cell array, a row decoder, and a column decoder. With this structure, different row addresses are allocated to respective functions of the operation setting information. Accordingly, stress is not caused in the CAM cell array of the unselected functions at the time of programming.
摘要:
An access identification circuit (4) identifies a first access operation or a second access operation and outputs an identification signal S. During the first access operation, stored data is read out after detecting a column address CADD, a burst address, and updating a word line to newly select memory cells MC. In the second access operation, the memory cells MC connected to the common word line which has been selected are selected by sequentially switching column selector switches. Operating condition information Dx (DAx and/or DBx) used for setting a load condition in a dummy load circuit (5) and/or setting a pulse width for an equalize signal EQ in an amplification control circuit (6) is stored in each of first and second storage sections (1, 2) that are provided for the first and second access operations, respectively. The operating condition information Dx is selected by a selector circuit (3) in response to the identification signal S and fed to the dummy load circuit (5) and/or the amplification control circuit (6). A suitable operating condition is selected for each of the access operations.
摘要:
An access identification circuit (4) identifies a first access operation or a second access operation and outputs an identification signal S. During the first access operation, stored data is read out after detecting a column address CADD, a burst address, and updating a word line to newly select memory cells MC. In the second access operation, the memory cells MC connected to the common word line which has been selected are selected by sequentially switching column selector switches. Operating condition information Dx (DAx and/or DBx) used for setting a load condition in a dummy load circuit (5) and/or setting a pulse width for an equalize signal EQ in an amplification control circuit (6) is stored in each of first and second storage sections (1, 2) that are provided for the first and second access operations, respectively. The operating condition information Dx is selected by a selector circuit (3) in response to the identification signal S and fed to the dummy load circuit (5) and/or the amplification control circuit (6). A suitable operating condition is selected for each of the access operations.
摘要:
An input current flowing into a current-voltage conversion circuit (1) is converted to a voltage value at an output terminal SAIN and, then, a differential amplification circuit (5) amplifies and outputs a differential voltage between the voltage value and the reference voltage Vref. PMOS and NMOS transistors T1, T2 are connected between the output terminal SAIN and the power-supply voltage VCC. After the output terminal SAIN is precharged to the power-supply voltage VCC by making the transistors conductive, the current-voltage conversion operation is performed by making a voltage drop corresponding to the input current. The precharge operation precharges the output terminal SAIN up to the power-supply voltage VCC and supplies precharge to a common data line N3 and bit lines.
摘要:
An input current flowing into a current-voltage conversion circuit (1) is converted to a voltage value at an output terminal SAIN and, then, a differential amplification circuit (5) amplifies and outputs a differential voltage between the voltage value and the reference voltage Vref. PMOS and NMOS transistors T1, T2 are connected between the output terminal SAIN and the power-supply voltage VCC. After the output terminal SAIN is precharged to the power-supply voltage VCC by making the transistors conductive, the current-voltage conversion operation is performed by making a voltage drop corresponding to the input current. The precharge operation precharges the output terminal SAIN up to the power-supply voltage VCC and supplies precharge to a common data line N3 and bit lines.
摘要:
An electric power steering device for a vehicle includes a plurality of assist systems electromagnetically driving an electric motor. When a first or second assist system malfunctions, a malfunction state assist amount calculation part calculates an assist amount while decreasing a limit value at the vehicle stopping, to an amount smaller than a limit value at the vehicle moving. When a malfunction such as a disconnection or a fixing of the switching elements occurs in the first or second assist systems on the basis of a judgment result of a malfunction judgment function, an assist amount switching part supplies an assist amount received from the malfunction state assist amount calculation part to first and second motor drive control parts. When a malfunction occurs in one of the first and second assist systems, one of the first and second motor drive control parts drives the motor by using the assist amount.