摘要:
In order to increase an aperture ratio, a part of or all of a gate electrode that overlaps with channel formation regions (213, 214) of a pixel TFT is caused to overlap with second wirings (source line or drain line) (154, 157). Additionally, a first interlayer insulating film (149) and a second interlayer insulating film (150c) are disposed between the gate electrode and the second wirings (154, 157) so as to decrease a parasitic capacitance.
摘要:
TFTs arranged in various circuits have structures that are suited for circuit functions, in order to improve operation characteristics and reliability of the semiconductor device, to lower consumption of electric power, to decrease the number of steps, to lower the cost of production and to improve the yield. The gradient of concentration of impurity element for controlling the conduction type in the LDD regions 622 and 623 of the TFT is such that the concentration increases toward the drain region. For this purpose, a tapered gate electrode 607 and a tapered gate-insulating film 605 are formed, and the ionized impurity element for controlling the conduction type is added to the semiconductor layer through the gate-insulating film 605.
摘要:
TFTs arranged in various circuits have structures that are suited for circuit functions, in order to improve operation characteristics and reliability of the semiconductor device, to lower consumption of electric power, to decrease the number of steps, to lower the cost of production and to improve the yield. The gradient of concentration of impurity element for controlling the conduction type in the LDD regions 622 and 623 of the TFT is such that the concentration increases toward the drain region. For this purpose, a tapered gate electrode 607 and a tapered gate-insulating film 605 are formed, and the ionized impurity element for controlling the conduction type is added to the semiconductor layer through the gate-insulating film 605.
摘要:
TFTs arranged in various circuits have structures that are suited for circuit functions, in order to improve operation characteristics and reliability of the semiconductor device, to lower consumption of electric power, to decrease the number of steps, to lower the cost of production and to improve the yield. The gradient of concentration of impurity element for controlling the conduction type in the LDD regions 622 and 623 of the TFT is such that the concentration increases toward the drain region. For this purpose, a tapered gate electrode 607 and a tapered gate-insulating film 605 are formed, and the ionized impurity element for controlling the conduction type is added to the semiconductor layer through the gate-insulating film 605.
摘要:
TFTs arranged in various circuits have structures that are suited for circuit functions, in order to improve operation characteristics and reliability of the semiconductor device, to lower consumption of electric power, to decrease the number of steps, to lower the cost of production and to improve the yield. The gradient of concentration of impurity element for controlling the conduction type in the LDD regions 622 and 623 of the TFT is such that the concentration increases toward the drain region. For this purpose, a tapered gate electrode 607 and a tapered gate-insulating film 605 are formed, and the ionized impurity element for controlling the conduction type is added to the semiconductor layer through the gate-insulating film 605.
摘要:
In order to increase an aperture ratio, a part of or all of a gate electrode that overlaps with channel formation regions (213, 214) of a pixel TFT is caused to overlap with second wirings (source line or drain line) (154, 157). Additionally, a first interlayer insulating film (149) and a second interlayer insulating film (150c) are disposed between the gate electrode and the second wirings (154, 157) so as to decrease a parasitic capacitance.
摘要:
TFTs arranged in various circuits have structures that are suited for circuit functions, in order to improve operation characteristics and reliability of the semiconductor device, to lower consumption of electric power, to decrease the number of steps, to lower the cost of production and to improve the yield. The gradient of concentration of impurity element for controlling the conduction type in the LDD regions 622 and 623 of the TFT is such that the concentration increases toward the drain region. For this purpose, a tapered gate electrode 607 and a tapered gate-insulating film 605 are formed, and the ionized impurity element for controlling the conduction type is added to the semiconductor layer through the gate-insulating film 605.
摘要:
In order to increase an aperture ratio, a part of or all of a gate electrode that overlaps with channel formation regions (213, 214) of a pixel TFT is caused to overlap with second wirings (source line or drain line) (154, 157). Additionally, a first interlayer insulating film (149) and a second interlayer insulating film (150c) are disposed between the gate electrode and the second wirings (154, 157) so as to decrease a parasitic capacitance.
摘要:
TFTs arranged in various circuits have structures that are suited for circuit functions, in order to improve operation characteristics and reliability of the semiconductor device, to lower consumption of electric power, to decrease the number of steps, to lower the cost of production and to improve the yield. The gradient of concentration of impurity element for controlling the conduction type in the LDD regions 622 and 623 of the TFT is such that the concentration increases toward the drain region. For this purpose, a tapered gate electrode 607 and a tapered gate-insulating film 605 are formed, and the ionized impurity element for controlling the conduction type is added to the semiconductor layer through the gate-insulating film 605.
摘要:
In order to increase an aperture ratio, a part of or all of a gate electrode that overlaps with channel formation regions (213, 214) of a pixel TFT is caused to overlap with second wirings (source line or drain line) (154, 157). Additionally, a first interlayer insulating film (149) and a second interlayer insulating film (150c) are disposed between the gate electrode and the second wirings (154, 157) so as to decrease a parasitic capacitance.