摘要:
In a near field optical probe, a through hole having an aperture is provided in a semiconductor photodetector including at least a first-conductive-type high-concentration impurity layer, a first-conductive-type low-concentration impurity layer and a second-conductivity impurity-introduced region.
摘要:
In a near field optical probe, a through hole having an aperture is provided in a semiconductor photodetector including at least a first-conductive-type high-concentration impurity layer, a first-conductive-type low-concentration impurity layer and a second-conductivity impurity-introduced region.
摘要:
An optical-pickup slider is characterized in that a light-transmitting-property substrate is bonded to a surface of a layer having a tapered through hole, on which surface a larger opening of the tapered through hole exists. Thereby, it is possible to prevent the layer having an aperture from being destroyed. A method of manufacturing the optical-pickup slider comprises the steps of a) making a tapered through hole in a layer layered on a first substrate and having a thickness smaller than that of the first substrate; and, after bonding a light-transmitting-property substrate to a surface of the layer, removing the first substrate so as to expose an aperture at a tip of the tapered through hole.
摘要:
Measurement of an internal structure of a sample is performed using interference of light within a short time. Through a first optical frequency comb generator 5 using a first signal having a frequency f1 and generating reference light having a sideband every interval of the frequency f1 and a second optical frequency comb generator 6 using a second signal having a frequency f2 and generating object light having a sideband every interval of the frequency f2, and sweeping of emission timing between the reference light and the object light, by changing a phase difference or frequency difference between the first signal and second signal, and detecting a change in light intensity of the interference light due to the interference, operation of detecting the interference position is made at a high speed.
摘要:
Disclosed is an improved optical near-field probe for optical near-field microscopy or optical near-field recording having an effective aperture diameter variable to comply with different applications. The improvement comprises attaching, to the aperture end opening of an optical fiber-based probe, a thin film made from a substance which is opaque but capable of being rendered transparent, such as antimony or photo-chromic compounds, by irradiation with light so that the center area only of the end opening becomes transparent and transmits the laser beam to serve as an effective aperture of a diameter variable depending on the intensity of the light.
摘要:
The broad range measurement exploiting the usual propagated light and the high resolution measurement mode exploiting near-field light are to be accomplished with a sole as-assembled optical probe. To this end, light radiated through an optical probe 13 having a light shielding coating layer 33 formed for defining a light radiating aperture D or light radiated at a core 31 of the optical probe 13 is propagated, as the optical probe 13 is moved in a direction towards and away from a surface for measurement 2a. The core of the optical probe is coated with a light shielding coating layer 33. In this manner, a spot of propagated light propagated through the core 31 or a spot of near-field light seeping from the light radiating aperture D is formed on the surface for measurement 2a, and light derived from the spot of light is detected.
摘要:
An optical detection device image is disclosed that allows fast measurements using near-field light at high resolution and high efficiency but without necessity of position alignment of an optical fiber probe. The optical detection device includes an optical fiber probe having a core for propagating light with an optical probe being formed at a front end of the core; a movement control unit to move the optical fiber probe to approach or depart from a sample; and a detection unit to detect light from the sample surface, wherein on the front end surface of the core of the optical probe, there are a first exit section on a peripheral side for emitting propagating light and a second exit section for seeping out the near-field light, the first exit section and the second exit section are formed in a concentric manner, and the tilt angle of the first exit section is different from the tilt angle of the second exit section.
摘要:
An optical-pickup slider is characterized in that a light-transmitting-property substrate is bonded to a surface of a layer having a tapered through hole, on which surface a larger opening of the tapered through hole exists. Thereby, it is possible to prevent the layer having an aperture from being destroyed. A method of manufacturing the optical-pickup slider comprises the steps of a) making a tapered through hole in a layer layered on a first substrate and having a thickness smaller than that of the first substrate; and, after bonding a light-transmitting-property substrate to a surface of the layer, removing the first substrate so as to expose an aperture at a tip of the tapered through hole.
摘要:
An optical-pickup slider is characterized in that a light-transmitting-property substrate is bonded to a surface of a layer having a tapered through hole, on which surface a larger opening of the tapered through hole exists. Thereby, it is possible to prevent the layer having an aperture from being destroyed. A method of manufacturing the optical-pickup slider comprises the steps of a) making a tapered through hole in a layer layered on a first substrate and having a thickness smaller than that of the first substrate; and, after bonding a light-transmitting-property substrate to a surface of the layer, removing the first substrate so as to expose an aperture at a tip of the tapered through hole.
摘要:
An optical detection device image is disclosed that allows fast measurements using near-field light at high resolution and high efficiency but without necessity of position alignment of an optical fiber probe. The optical detection device includes an optical fiber probe having a core for propagating light with an optical probe being formed at a front end of the core; a movement control unit to move the optical fiber probe to approach or depart from a sample; and a detection unit to detect light from the sample surface, wherein on the front end surface of the core of the optical probe, there are a first exit section on a peripheral side for emitting propagating light and a second exit section for seeping out the near-field light, the first exit section and the second exit section are formed in a concentric manner, and the tilt angle of the first exit section is different from the tilt angle of the second exit section.