摘要:
A method, system, and library for generating high-speed logic circuits with reduced path depths even in cases when a critical path diverges into a plurality of paths that eventually converge. By replacing the gates of a logic circuit by selectors with two inputs and one output, a selector-based circuit is generated where a local circuit between the path divergence node and convergence node is detected. The stages of the critical path are reduced by replacing the local circuit by a logically equivalent selector with two inputs and one output; wherein one input of the selector is controlled by a circuit formed by inputting a logical value of “0” to the divergence node from which the local circuit is developed and a second input of the selector is controlled by a circuit formed by inputting a logical value of “1” to the divergence node.
摘要:
A method, system, and library for generating high-speed logic circuits with reduced path depths even in cases when a critical path diverges into a plurality of paths that eventually converge. By replacing the gates of a logic circuit by selectors with two inputs and one output, a selector-based circuit is generated where a local circuit between the path divergence node and convergence node is detected. The stages of the critical path are reduced by replacing the local circuit by a logically equivalent selector with two inputs and one output; wherein one input of the selector is controlled by a circuit formed by inputting a logical value of “0” to the divergence node from which the local circuit is developed and a second input of the selector is controlled by a circuit formed by inputting a logical value of “1” to the divergence node.
摘要:
The I/O terminal positions of a pass transistor logic circuit cell are distributed in the cell, an output amplifier is provided on the end part of the cell, the pass transistor circuit is arranged in the direction in which a potential supply line extends, a signal polarity inverting circuit is laid out in the cell and the arrangement of wells is different from the arrangement of a conventional CMOS logic circuit.
摘要:
For the relation between the first and second pass-transistor circuits (PT1, PT2), the output signal of the preceding-stage is supplied to the gate of the succeeding-stage, and for the relation between the second and third pass-transistor circuits (PT2, PT3), the output signal of the preceding-stage is supplied to the source-drain path of the succeeding-stage. The first pass-transistor circuit (PT1) receives on its first input node (In1) and second input node (In2) the first input signal and the second input signal that are logically independent from each other. This logic circuit requires a smaller number of transistors and is capable of reducing the power consumption and delay and accomplishing an intricate logic function.
摘要:
In order to effectively explore a binary decision diagram for synthesizing a logic circuit, a tentative circuit comprised of AND gates and OR gates is synthesized from a logic function. The number of gates in this circuit to which two input variables are simultaneously associated are counted and used as correlation between the two input variables. A correlation matrix for correlation among all of the input variables is generated. The input variables are sequentially grouped from a set of input variables with strongest correlation in the correlation matrix: These groups are registered into a correlation tree, and an intergroup correlation tree is produced. These groups are sequentially selected from a group with the least correlation, and the intragroup order of the selected group is changed from one to another. A binary decision diagram is explored which satisfies the most appropriate condition in that group (such as the minimum number of nodes, the minimum delay, and the minimum area). The above processes repeated for all groups. Each node of the binary decision diagram thus obtained is substituted by a selector and each selector circuit is substituted by a circuit of a transistor level.
摘要:
A program for automatically designing a logic circuit used for a method of designing a pass transistor circuit, by which the number of required transistors, delay time, power consumption and chip area of the pass transistor circuit is reduced. The program executes the following steps: a) receiving inputted logic functions which define the logical relationship between the inputs and the outputs, and an inputted target specification, b) generating a binary decision diagram from part of the logic functions received at (a), c) replacing the diagram nodes formed at (b) with pass transistor circuit, d) judging whether or not the simulation characteristics of the pass transistor circuit described in (c) meets the target specification described in (a), and executing the following steps when the judgment is “no”, e) replacing part of the diagram generated by the procedure described in (b) with another diagram, f) allocating a new binary decision diagram to the control inputs of the nodes of the replaced diagram prepared at (e), and g) repeating the steps (c) and (d) for the diagram prepared at (f).
摘要:
To produce a logic circuit with excellent characteristics including area, delay time and power consumption by combining pass transistor logic circuits and CMOS logic circuits, a binary decision diagram is created from a Boolean function. Respective nodes are mapped into 2-input, 1-output, 1-control input pass transistor selectors to synthesize a pass transistor logic circuit. A pass transistor selector operating as a NAND or NOR logic with any one of its two inputs, excluding the control input, being fixed to a logical constant “1” or “0” is replaced with a CMOS gate operating as a NAND or NOR logic logically equivalent to the pass transistor selector if the value of a predetermined circuit characteristic obtained by the replacement is closer to an optimal value.
摘要:
This application proposes a new logic circuit including the 1st selector (S1) in which the control input S is controlled by the first input signal (IN1), the input I1 or I0 is controlled by the second input signal (IN2), and the output O is connected to the first node (N1), and the 3rd selector (S3) in which the control input S is controlled by the first node (N1), the input I1 is controlled by the third input signal (IN3), the input I0 is controlled by the first input signal (IN1), and the output is connected to the first output signal (OUT1).
摘要:
In order to produce a logic circuit excellent in circuit characteristics which are area, delay time and power consumption by combining pass transistor logic circuits and CMOS logic circuits, a binary decision diagram is created from a Boolean function, and respective nodes of the diagram are mapped into 2-input, 1-output, 1-control input pass transistor selectors to synthesize a pass transistor logic circuit. In the pass transistor logic circuit, a pass transistor selector operating as a NAND or NOR logic with any one of its two inputs excluding the control input being fixed to a logical constant “1” or “0” is replaced with a CMOS gate operating as a NAND or NOR logic logically equivalent to the pass transistor selector if the value of a predetermined circuit characteristic obtained by the replacement is closer to an optimal value (if the resulting logic circuit is smaller in area, delay time or power consumption than the original pass transistor logic circuit).
摘要:
This application proposes a new logic circuit including the 1st selector (S1) in which the control input S is controlled by the first input signal (IN1), the input I1 or I0 is controlled by the second input signal (IN2), and the output O is connected to the first node (N1), and the 3rd selector (S3) in which the control input S is controlled by the first node (N1), the input I1 is controlled by the third input signal (IN3), the input I0 is controlled by the first input signal (IN1), and the output is connected to the first output signal (OUT1).