Abstract:
The invention discloses a rock damage acoustic monitoring system including an acoustic emission sensor installed in a borehole of a monitored rock mass and a ground workstation. The acoustic emission sensor is composed of an acoustic emission probe and a probe installation mechanism for installing the acoustic emission probe and a transmission mechanism for transmitting the probe installation mechanism. The probe installation mechanism includes a shell, a probe sleeve installed in the shell, an end cap fixed on the upper end surface of the probe sleeve, and a piston hydro-cylinder arranged between the top of the inner wall of the shell and the end cap. The present invention realizes the control of the moving direction of the shell and the probe sleeve by the piston hydro-cylinder component and the hydraulic pump.
Abstract:
The present invention discloses a rock mechanics experiment system for simulating deep-underground environment, including a triaxial chamber consisting of a chamber cavity and a test pedestal, a stress field building module, a high pressure seepage field building module, a high temperature field building and a seepage medium permeating control measurement module arranged in the triaxial chamber, a lifting module used for installing and disassembling of the chamber cavity, and computer module used for controlling the operation of system and calculating and outputting the test data. The lifting module includes a door-shaped support frame, a cylinder piston device vertically mounted on the door-shaped support frame beam, a coupling device and a safety suspension device. The coupling device includes an oil hydraulic rod with the upper end fixedly coupled with the piston, a safety disk fixedly coupled with the lower end of the hydraulic rod, and two symmetrically disposed coupling assemblies.
Abstract:
A loading platform for a rock mechanics test system (MTS) to realize simple and reliable connection between a high temperature and high pressure force sensor in a triaxial chamber cavity and an upper solid rigid column. The loading platform for rock mechanics test includes a master rod, a secondary rod and a stop sleeve sleeved on the master rod; the stop sleeve is provided with two corbel structures; the secondary rod is composed of a secondary rod head body and a secondary rod body; a circular magnetic block is fixed on the secondary rod to adsorb a hole alignment sleeve sleeved on the secondary rod; and the hole alignment sleeve marked with a first scale line and a second scale line.
Abstract:
An adjustable fixing device for acoustic emission test sensors for rock damage testing, the device including: a fixing frame; installation bases operating to accommodate the acoustic emission test sensors, respectively; fixing assemblies operating to fix the acoustic emission test sensors in the installation bases; and installation mechanisms operating to install the installation bases on the fixing frame. The fixing frame is a rectangular frame, and at least a pair of opposite frame walls of four frame walls is provided with installation slots adapted to install the installation mechanisms. The installation slots positioned at different frame walls are in a same cross section of the rectangular frame. Each of the installation bases is a cylinder structure. The cylinder structure includes: a cavity corresponding to an outer edge of each of the acoustic emission test sensors, and a wall including a gap for leading out wires of each sensor.
Abstract:
A bearing system for rock mechanics test under high temperature and high pressure multi-field coupling includes a force sensor lifting seat and a jack. The force sensor lifting seat includes a connecting disk connected with the jack, a support disk, and an operation channel. A groove dented downwards is arranged on the connecting disk, the support disk is disposed in the groove and freely propped upon the connecting disk; through holes of the connecting disk and the support disk form a control operation channel; and a limiting device is arranged for preventing an MTS triaxial force sensor from disengaging from the support disk. A bolt hole of the force sensor can be aligned with a mounting hole on a solid steel column by rotating the connecting disk for convenient and accurate bolting.
Abstract:
The present invention discloses a microseismic monitoring system, which includes at least a microseismic sensor, a push rod set at both ends of the microseismic sensor through the first connecting mechanism for sending the microseismic sensor into a monitoring hole, a guide mechanism installed on the push rod for guiding the microseismic sensor into the monitoring hole, and a microseismic monitoring computer connecting with the microseismic sensor signal. The microseismic sensor is reusable. The first connecting mechanism can make the push rod swing relative to the microseismic sensor. The guide mechanism is a three-roller guide mechanism. The present invention can satisfy the need of monitoring different locations in monitoring holes with large depths for multiple microseismic sensors, and solve problems of effective contact coupling between the microseismic sensors and monitoring holes, which improves the accuracy of microseismic monitoring and reduces the cost of a microseismic monitoring system.
Abstract:
A rock damage mechanics test system for high temperature and high pressure deep earth environment includes an MTS triaxial test machine and a control system connected therewith. The MTS triaxial test machine is composed of a rigid frame, a high temperature and high pressure triaxial chamber, and a triaxial chamber base. The control system includes a workstation for data processing and a manual controller for controlling the workstation and a master controller. The system improves mounting and dismounting efficiency of an MTS triaxial force sensor, enhances reliability of lifting and solves the problem of aligning holes during the force sensor mounting process, thus improving the mounting efficiency.
Abstract:
A triaxial high temperature and high pressure rock mechanics load test platform includes a base, a lifting seat, and an intermediate connecting seat arranged between the base and the lifting seat. A hydraulic assembly is arranged between the base and the intermediate connecting seat; the intermediate connecting seat is connected with the lifting seat by means of a group of connecting rods; the lifting seat is enclosed by a side wall and a base plate to form a receiving groove with an upward opening; and a limiting device is arranged on the side wall of the lifting seat for preventing an MTS triaxial force sensor from disengaging from a support disk.
Abstract:
A device for fixing a rock sample, the device including: a lower clamp and an upper clamp. The lower clamp includes: a lower connector connected to a bottom loading base, a lower end cap for fixing samples, a lower chain connecting the lower connector and the lower end cap, a first spiral spring, a first central position-limit mechanism, a second central position-limit mechanism, and a first hydraulic mechanism. The lower end cap includes: a first sample fixing groove and a first connecting segment. The upper clamp includes: an upper connector connected to a top loading base, an upper end cap for fixing the samples, an upper chain connecting with the upper connector and the upper end cap, a second spiral spring, a third central position-limit mechanism, fourth central position-limit mechanism, and a second hydraulic mechanism. The upper end cap includes: a second sample fixing groove and a second connecting segment.
Abstract:
A test system for a microseismic test of rock mass fractures provided by the present invention includes at least one microseismic sensor, a push rod provided at two ends of the microseismic sensor through a connecting mechanism for feeding the microseismic sensor into a monitoring hole , an introducing mechanism mounted on the push rod for introducing the microseismic sensor into the monitoring hole, a hydraulic system providing support hydraulic oil for the microseismic sensor, a microseismic monitoring computer connected with the signal of microseismic sensor through; the microseismic sensor includes a microseismic probe, a holding component holding the microseismic probe, a support plate and a hydraulic support mechanism; the connecting mechanism can make the push rod swing relative to the microseismic sensor, and the introducing mechanism is three-rollers introducing mechanism.