摘要:
Techniques for performing network-assisted peer discovery with network coding are disclosed. For peer discovery with network coding, a device may generate a network-coded message based on a message assigned to the device and one or more messages received by the device from other devices. The device may transmit a proximity detection signal including the network-coded message. For network-assisted peer discovery with network coding, the device may register with a network for peer discovery and may be provided with at least one parameter to use for peer discovery with network coding. The devices may perform peer discovery with network coding in accordance with the peer discovery parameter(s) received from the network. The device may generate a network-coded message based on the at least one peer discovery parameter and may transmit the network-coded message to enable other devices to detect the device.
摘要:
Techniques for performing network-assisted peer discovery with network coding are disclosed. For peer discovery with network coding, a device may generate a network-coded message based on a message assigned to the device and one or more messages received by the device from other devices. The device may transmit a proximity detection signal including the network-coded message. For network-assisted peer discovery with network coding, the device may register with a network for peer discovery and may be provided with at least one parameter to use for peer discovery with network coding. The devices may perform peer discovery with network coding in accordance with the peer discovery parameter(s) received from the network. The device may generate a network-coded message based on the at least one peer discovery parameter and may transmit the network-coded message to enable other devices to detect the device.
摘要:
Systems and methodologies are described that facilitate establishing a forward link acknowledgement channel and transmitting acknowledgment signals thereupon. In particular, the signals can be spread within contiguous channel clusters in a tile where the signals in the cluster are mutually orthogonal to one another. Additionally, the signals can be multiplexed over a plurality of frequency regions. In this regard, the acknowledgment signals are diverse with respect to frequency and interference; moreover, the signals can be received and decoded even where one of the channels experiences high interference. Furthermore, the acknowledgement signals can also communicate a channel deassignment value, which allows devices to utilize persistent channels in communicating data to one another.
摘要:
Techniques for supporting peer-to-peer (P2P) communication are disclosed. In an aspect, P2P communication may be supported with a symmetric waveform for a P2P downlink and a P2P uplink. In one design, a first UE generates a first signal based on a particular waveform (e.g., a downlink waveform or an uplink waveform for a wireless network) and transmits the first signal to a second UE for P2P communication. The first UE also receives a second signal generated by the second UE based on the particular waveform and transmitted to the first UE for P2P communication. In another aspect, a proximity detection signal may be transmitted in a portion of a subframe instead of the entire subframe. The remaining portion of the subframe may be used to transmit control information and/or other information to support P2P communication.
摘要:
In a cellular wireless communication system, peer-to-peer (P2P) links between mobile devices are implemented, and controlled using an aggregate utility metric for a group of P2P and cellular links. A mobile node participating in a P2P link, or an eNB, may periodically broadcast an activity level indicator indicating a resource-dependent activity level of the link. The node may control the activity level in response to utility metrics received from members of neighboring P2P links to maximize an aggregate utility of the link and the neighboring P2P links sharing at least a subset of resources of a common frequency spectrum. Formation or termination of P2P links may be controlled in response to comparing a calculated achievable utility value to a current utility value of a link, and taking action calculated to maximize the aggregate utility value.
摘要:
Techniques for performing peer discovery to enable peer-to-peer (P2P) communication are disclosed. In an aspect, a proximity detection signal used for peer discovery may be generated based on one or more physical channels and/or signals used in a wireless network. In one design, a user equipment (UE) may generate a proximity detection signal occupying at least one resource block based on a SC-FDMA modulation technique. In another design, the UE may generate a proximity detection signal occupying at least one resource block based on an OFDMA modulation technique. The UE may generate SC-FDMA symbols or OFDMA symbols in different manners for different physical channels. In yet another design, the UE may generate a proximity detection signal including a primary synchronization signal and a secondary synchronization signal. For all designs, the UE may transmit the proximity detection signal to indicate its presence and to enable other UEs to detect the UE.
摘要:
Techniques for performing peer discovery in a wireless network are described. A device may perform peer discovery to detect and identify other devices of interest. In an aspect, the device may perform peer discovery based on a hybrid mode that includes autonomous peer discovery and network-assisted peer discovery. In another aspect, the device may perform peer discovery based on a push mode and a pull mode. For the push mode, the device may occasionally transmit and/or receive a peer detection signal. For the pull mode, the device may transmit and/or receive a peer discovery request when triggered. In yet another aspect, the device may perform event-triggered peer discovery (e.g., for the pull mode). In yet another aspect, the device may perform peer discovery using both a downlink spectrum and an uplink spectrum. In yet another aspect, the device may transmit a peer detection signal in a manner to improve detection and/or increase payload.
摘要:
Techniques for performing peer discovery to enable peer-to-peer (P2P) communication are disclosed. In an aspect, a proximity detection signal used for peer discovery may be generated based on one or more physical channels and/or signals used in a wireless network. In one design, a user equipment (UE) may generate a proximity detection signal occupying at least one resource block based on a SC-FDMA modulation technique. In another design, the UE may generate a proximity detection signal occupying at least one resource block based on an OFDMA modulation technique. The UE may generate SC-FDMA symbols or OFDMA symbols in different manners for different physical channels. In yet another design, the UE may generate a proximity detection signal including a primary synchronization signal and a secondary synchronization signal. For all designs, the UE may transmit the proximity detection signal to indicate its presence and to enable other UEs to detect the UE.
摘要:
Systems and methodologies are described that facilitate dynamically forming clusters in a wireless communication environment. A set of non-overlapping clusters can be formed dynamically over time and in a distributed manner. Each of the clusters can include a set of base stations and a set of mobile devices. The clusters can be yielded based upon a set of local strategies selected by base stations across the network converged upon through message passing. For example, each base station can select a particular local strategy as a function of time based upon network-wide utility estimates respectively conditioned upon implementation of the particular local strategy and disparate possible local strategies that can cover the corresponding base station. Moreover, operation within each of the clusters can be coordinated.
摘要:
Techniques for supporting peer-to-peer (P2P) communication are disclosed. In an aspect, P2P communication may be supported with a symmetric waveform for a P2P downlink and a P2P uplink. In one design, a first UE generates a first signal based on a particular waveform (e.g., a downlink waveform or an uplink waveform for a wireless network) and transmits the first signal to a second UE for P2P communication. The first UE also receives a second signal generated by the second UE based on the particular waveform and transmitted to the first UE for P2P communication. In another aspect, a proximity detection signal may be transmitted in a portion of a subframe instead of the entire subframe. The remaining portion of the subframe may be used to transmit control information and/or other information to support P2P communication.