摘要:
A system for monitoring a weld process is provided. The system includes an ultrasonic wave generator adapted to deliver an ultrasonic signal to a target material during a weld operation. The system also includes a pair of ultrasonic receiver elements with opposite directions of polarization relative to each other, the ultrasonic receiver elements configured to receive the ultrasonic signal propagated through the target material. The system further includes an electronic circuit coupled to the pair of ultrasonic receiver elements. The electronic circuit is configured to receive respective signals from the pair of ultrasonic receiver elements; wherein the respective signals comprise the ultrasonic signal and a noise signal. The electronic circuit is also configured to output the ultrasonic signal devoid of the noise signal. The system also includes a signal processor coupled to the electronic circuit, wherein the signal processor is configured to determine a quality level of a weld created during the weld operation by extracting data corresponding to the ultrasonic signal and comparing the data to a profile that corresponds to an acceptable quality level.
摘要:
A system for monitoring a weld operation is provided. The system includes an ultrasonic wave generator adapted to deliver an ultrasonic wave to a target material during the weld operation and an ultrasonic receiver adapted to receive the ultrasonic wave propagated through the target material. The system also includes a signal processor adapted to determine a quality level of a weld created during the weld operation by extracting data corresponding to a torsional mode from the ultrasonic wave and comparing the data to a profile that corresponds to an acceptable quality level.
摘要:
A system for monitoring a weld operation is provided. The system includes an ultrasonic wave generator adapted to deliver an ultrasonic wave to a target material during the weld operation and an ultrasonic receiver adapted to receive the ultrasonic wave propagated through the target material. The system also includes a signal processor adapted to determine a quality level of a weld created during the weld operation by extracting data corresponding to a torsional mode from the ultrasonic wave and comparing the data to a profile that corresponds to an acceptable quality level.
摘要:
A multi-part mounting device for an ultrasonic transducer, the mounting device comprising a first part configured to mount the mounting device on a housing of an ultrasonic test probe, and a second part configured to retain the ultrasonic transducer, wherein the second part is at least in touching contact with the ultrasonic transducer, wherein the second part comprises a first plastic and is connected by positive fit to the first part, and wherein the first part has a greater hardness than the second part.
摘要:
The non-destructive testing of a test object by way of ultrasound includes: (a) radiating directed ultrasonic pulses into the test object at an irradiation angle β wherein the irradiation angle β is set electronically, (b) recording echo signals that result from the ultrasonic pulses radiated into the test object, and (c) determining an irradiation position X0 in which echo signals can be recorded that can be associated with an error in the volume of the test object. The method also includes (d) determining the irradiation angle βmax for which the ERS value of the error reaches its maximum at position X0, (e) changing the irradiation position X0→X1 on the surface of the test object, the change of the irradiation position being captured, and (f) electronically adjusting the irradiation angle β in such a manner that the ERS value of the error reaches its maximum in the changed irradiation position X1.
摘要:
The present application provides an ultrasonic testing device. The ultrasonic testing device may include a conical backing and an ultrasonic transducer assembly positioned on the conical backing. The ultrasonic transducer assembly may include a printed circuit substrate with a number of separate transducer elements.
摘要:
The invention relates to a nondestructive ultrasonic test method in which at least one ultrasonic pulse is emitted into a workpiece under test by means of at least one ultrasonic transmitter (3), the ultrasonic pulse is reflected on boundary surfaces within the workpiece, the reflected ultrasound is received by at least one ultrasonic receiver (2), and the associated signals are evaluated, the ultrasound penetrating a damping block (4) that is arranged between the workpiece and the transmitter or receiver. Said method is characterized in that it includes at least one step for determining the sound velocity in the damping block (4) by means of an array-type probe (1) comprising selectively controllable transducers; in said step, at least one first transducer (3) of the array-type probe (1) is used as the transmitter of at least one ultrasonic pulse, while at least one second transducer (2) of the array-type probe (1) is used as the receiver of the ultrasonic pulse, and the sound velocity in the damping block (4) is determined at least by measuring the propagation time of the ultrasound along the shortest distance (e1, e2) of the ultrasound between the respective transducers (2, 3) that are placed at a distance from each other.
摘要:
Method and apparatus for the non-destructive inspection of a test object with a large material thickness by means of ultrasound. The apparatus includes an ultrasonic test probe with an ultrasonic transducer divided into a plurality of individually activatable transducer segments wherein the transducer segments are concentric circles or rings, or sections thereof. A first group j (j=1, 2, 3, . . . ) of transducer segments is selected in such a way that a parallel activation of these transducer segments results in a circular active surface Fj of the ultrasonic transducer (22). An ultrasound inspection of the test object is undertaken with the first group j (j=1, 2, 3, . . . ) of transducer segments, wherein they are activated in parallel.
摘要:
An ultrasonic probe includes ultrasonic transducers and processing electronics to control emission of ultrasonic energy and to process and digitize returned echo data. Processed echo data can then be transmitted over a digital interface for display.
摘要:
The invention relates to a nondestructive ultrasonic test method in which at least one ultrasonic pulse is emitted into a workpiece under test by at least one ultrasonic transmitter (3), the ultrasonic pulse is reflected on boundary surfaces within the workpiece, the reflected ultrasound is received by at least one ultrasonic receiver (2), and the associated signals are evaluated, the ultrasound penetrating a damping block (4) that is arranged between the workpiece and the transmitter or receiver. The method is characterized in that it includes at least one step for determining at least one dimension (alpha, d1, d2) of the damping block (4) that is relevant for the ultrasonic test; in said step, the propagation time of at least one ultrasonic pulse which is generated by the ultrasonic transmitter (3), is reflected on a boundary surface (5) of the damping block (4), and is received by the ultrasonic receiver (2) is measured, and at least one dimension (alpha, d1, d2) of the damping block (4) that is relevant for the ultrasonic test is determined from the measurement.