Transformers with multi-turn primary windings for dynamic power flow control

    公开(公告)号:US10424929B2

    公开(公告)日:2019-09-24

    申请号:US15975373

    申请日:2018-05-09

    Abstract: Active impedance-injection module enabled for distributed power flow control of high-voltage (HV) transmission lines is disclosed. The module uses transformers with multi-turn primary windings, series-connected to high-voltage power lines, to dynamically control power flow on those power lines. The insertion of the transformer multi-turn primary is by cutting the line and splicing the two ends of the winding to the ends of the cut high-voltage transmission line. The secondary winding of the transformer is connected to a control circuit and a converter/inverter circuit that is able to generate inductive and capacitive impedance based on the status of the transmission line. The module operates by extracting power from the HV transmission line with the module floating at the HV transmission-line potential. High-voltage insulators are typically used to suspend the module from transmission towers, or intermediate support structures. It may also be directly suspended from the HV transmission line.

    Transformers with Multi-Turn Primary Windings for Dynamic Power Flow Control

    公开(公告)号:US20180262006A1

    公开(公告)日:2018-09-13

    申请号:US15975373

    申请日:2018-05-09

    Abstract: Active impedance-injection module enabled for distributed power flow control of high-voltage (HV) transmission lines is disclosed. The module uses transformers with multi-turn primary windings, series-connected to high-voltage power lines, to dynamically control power flow on those power lines. The insertion of the transformer multi-turn primary is by cutting the line and splicing the two ends of the winding to the ends of the cut high-voltage transmission line. The secondary winding of the transformer is connected to a control circuit and a converter/inverter circuit that is able to generate inductive and capacitive impedance based on the status of the transmission line. The module operates by extracting power from the HV transmission line with the module floating at the HV transmission-line potential. High-voltage insulators are typically used to suspend the module from transmission towers, or intermediate support structures. It may also be directly suspended from the HV transmission line.

    Powering an impedance injection unit during startup operations

    公开(公告)号:US12184162B1

    公开(公告)日:2024-12-31

    申请号:US17249278

    申请日:2021-02-25

    Abstract: A multi-mode power supply is described for providing power to an impedance injection unit that is operable to inject reactive power into a power transmission line. The impedance injection unit is configured to operate safely in the presence of switching states of the impedance injection unit, and in the presence of disturbances such as surge currents in the power transmission line, by the multi-mode power supply clamping a potential overvoltage to a safe level. The power supply contains analog and digital circuits and can recover automatically from a surge current in the transmission line, or from a condition of zero line current. Power harvesting may be achieved via a line connected current transformer, via an internal current transformer, via a DC link capacitor, or from combinations of these.

    Voltage or Impedance-Injection Method Using Transformers with Multiple Secondary Windings for Dynamic Power Flow Control

    公开(公告)号:US20170163245A1

    公开(公告)日:2017-06-08

    申请号:US15069785

    申请日:2016-03-14

    Abstract: This patent discloses an active impedance-injection module for dynamic line balancing of a high-voltage (HV) transmission line. The impedance-injection module comprises a plurality of transformers each having a primary winding in series with a HV transmission line. Each transformer also has secondary windings, each connected to an individual electronic converter. The plurality of secondary windings are electrically isolated from the associated primary winding and extract power from the HV transmission line for operation of the converters and other circuits connected to the secondary windings. The active impedance-injection module is enabled to generate a controlled impedance, inductive or capacitive, to be impressed on the HV transmission line. A plurality of active impedance-injection modules spatially distributed on a HV transmission line are enabled to inject a controlled cumulative impedance on a HV transmission line while limiting the capacity of individual converters to that achievable with practical electronic components.

    Transformers with Multi-Turn Primary Windings for Dynamic Power Flow Control

    公开(公告)号:US20170163036A1

    公开(公告)日:2017-06-08

    申请号:US15055422

    申请日:2016-02-26

    Abstract: Active impedance-injection module enabled for distributed power flow control of high-voltage (HV) transmission lines is disclosed. The module uses transformers with multi-turn primary windings, series-connected to high-voltage power lines, to dynamically control power flow on those power lines. The insertion of the transformer multi-turn primary is by cutting the line and splicing the two ends of the winding to the ends of the cut high-voltage transmission line. The secondary winding of the transformer is connected to a control circuit and a converter/inverter circuit that is able to generate inductive and capacitive impedance based on the status of the transmission line. The module operates by extracting power from the HV transmission line with the module floating at the HV transmission-line potential. High-voltage insulators are typically used to suspend the module from transmission towers, or intermediate support structures. It may also be directly suspended from the HV transmission line.

    Transformers with multi-turn primary windings for dynamic power flow control

    公开(公告)号:US10418814B2

    公开(公告)日:2019-09-17

    申请号:US15055422

    申请日:2016-02-26

    Abstract: Active impedance-injection module enabled for distributed power flow control of high-voltage (HV) transmission lines is disclosed. The module uses transformers with multi-turn primary windings, series-connected to high-voltage power lines, to dynamically control power flow on those power lines. The insertion of the transformer multi-turn primary is by cutting the line and splicing the two ends of the winding to the ends of the cut high-voltage transmission line. The secondary winding of the transformer is connected to a control circuit and a converter/inverter circuit that is able to generate inductive and capacitive impedance based on the status of the transmission line. The module operates by extracting power from the HV transmission line with the module floating at the HV transmission-line potential. High-voltage insulators are typically used to suspend the module from transmission towers, or intermediate support structures. It may also be directly suspended from the HV transmission line.

    Voltage or impedance-injection method using transformers with multiple secondary windings for dynamic power flow control

    公开(公告)号:US10283254B2

    公开(公告)日:2019-05-07

    申请号:US15981616

    申请日:2018-05-16

    Abstract: This patent discloses an active impedance-injection module for dynamic line balancing of a high-voltage (HV) transmission line. The impedance-injection module comprises a plurality of transformers each having a primary winding in series with a HV transmission line. Each transformer also has secondary windings, each connected to an individual electronic converter. The plurality of secondary windings are electrically isolated from the associated primary winding and extract power from the HV transmission line for operation of the converters and other circuits connected to the secondary windings. The active impedance-injection module is enabled to generate a controlled impedance, inductive or capacitive, to be impressed on the HV transmission line. A plurality of active impedance-injection modules spatially distributed on a HV transmission line are enabled to inject a controlled cumulative impedance on a HV transmission line while limiting the capacity of individual converters to that achievable with practical electronic components.

    High speed solenoid driver circuit
    10.
    发明授权

    公开(公告)号:US11621134B1

    公开(公告)日:2023-04-04

    申请号:US17249282

    申请日:2021-02-25

    Abstract: A driver circuit for driving a solenoid, and related method, are described. A power supply charges one or more capacitors to a high voltage level sufficient to over-drive the solenoid. A switch is connected to the one or more capacitors and the solenoid. When the switch is on, the switch connects the one or more capacitors to the solenoid. When the switch is off, the switch disconnects the one or more capacitors from the solenoid. Control circuitry turns the switch on, and turns the switch off in response to sensing current through the solenoid reaches a defined maximum current.

Patent Agency Ranking