Abstract:
A computer-implemented method for an energy generation site includes detecting an energy storage device and its storage capacity, detecting an electrical grid operatively coupled to the energy generation site, and receiving event data corresponding to an event affecting the electrical grid. The method further includes determining a probability that the electrical grid will experience a power outage based on the event data, and charging the storage device according to a first charging profile or a second charging profile based on the probability. A maximum charge set point of the storage device for the first charging profile is less than the maximum storage capacity of the storage device, and the maximum charge set point for the second charging profile is at the maximum storage capacity of the storage device. The event data can be weather data, geological data, social media, or local alert data.
Abstract:
Systems and methods for facilitating the electrical design of an energy generation system. In one embodiment, a method is provided that can comprise receiving, by a computer system from a user, first information pertaining to an energy generation system to be installed at a customer site. The method can further comprise determining an electrical design for installing the energy generation system at the customer site, where the determining is based on the first information, second information retrieved from one or more external data sources, an electrical data model, and a decision tree that models the electrical design process. An installation diagram can then be generated that illustrates the determined electrical design.
Abstract:
Techniques are disclosed for implementing a scalable hierarchical energy distribution grid utilizing homogeneous control logic are disclosed that provide distributed, autonomous control of a multitude of sites in an energy system using abstraction and aggregation techniques. A hierarchical energy distribution grid utilizing homogeneous control logic is provided that includes multiple control modules arranged in a hierarchy. Each control module can implement a same energy optimization scheme logic to directly control site energy resources and possibly energy resources of sites associated with control modules existing below it in the hierarchy. Each control module can act autonomously through use a similar set of input values to the common optimization scheme logic.
Abstract:
The present invention includes a back feed meter adapter having one or more electrical sockets disposed of the exterior surface for accepting a plug from an alternative electrical power generator in installations that include an existing electrical utility service panel. The sockets of the back feed meter can be rotated relative to the internal couplers such that it can be easily positioned relative to the back feed connections coming from the alternative electrical power generator. The back feed meter adapter can also include an electrical switch for coupling/decoupling the electrical sockets from the electrical meter, the electrical service panel, or the electrical power utility grid to which the back feed meter adapter is coupled. The back feed meter adapter can include a window for visual confirmation of the electrical switch state. Various functionality of the back feed meter adapter can be monitored or controlled via a wireless network.
Abstract:
The present invention includes a back feed meter adapter having one or more electrical sockets disposed of the exterior surface for accepting a plug from an alternative electrical power generator in installations that include an existing electrical utility service panel. The sockets of the back feed meter can be rotated relative to the internal couplers such that it can be easily positioned relative to the back feed connections coming from the alternative electrical power generator. The back feed meter adapter can also include an electrical switch for coupling/decoupling the electrical sockets from the electrical meter, the electrical service panel, or the electrical power utility grid to which the back feed meter adapter is coupled. The back feed meter adapter can include a window for visual confirmation of the electrical switch state. Various functionality of the back feed meter adapter can be monitored or controlled via a wireless network.