摘要:
Example embodiments of the invention may provide for active baluns. An example active balun may include a resonator that may convert a single-ended input signal to at least two differential input signals, and a differential switching block that includes first and second transistors that each receive a respective one of the at least two differential input signals from the resonator, where the first and second transistors may be cross-coupled to each other to provide a first differential output signal and a second differential output signal. An example active balun may further include one or more loads connected to the first and second differential output signals, and one or more stacked inverters that may provide a first output port and a second output port, where the first output port may be responsive to the first differential output signal and the second output port may be responsive to the second differential output signal.
摘要:
Example embodiments of the invention may provide for active baluns. An example active balun may include a resonator that may convert a single-ended input signal to at least two differential input signals, and a differential switching block that includes first and second transistors that each receive a respective one of the at least two differential input signals from the resonator, where the first and second transistors may be cross-coupled to each other to provide a first differential output signal and a second differential output signal. An example active balun may further include one or more loads connected to the first and second differential output signals, and one or more stacked inverters that may provide a first output port and a second output port, where the first output port may be responsive to the first differential output signal and the second output port may be responsive to the second differential output signal.
摘要:
Disclosed herein is a differential amplifier using body-source cross coupling. In a common gate differential amplifier in which common gate amplifiers are implemented in a differential structure, since the bodies of the common gate amplifiers are cross coupled to the sources of the opposite common gate amplifiers, it is possible to increase transconductance due to body effect to improve a gain. Since the potential of the body is equal to that of the source in a DC mode, a breakdown voltage reduction problem is alleviated.
摘要:
A differential amplifier and a method for generating a computer simulation model thereof are disclosed. The device is thermally stable through adoption of a ballast resistor to a differential structure of a unit transistor pair, such that the differential amplifier prevents heat effect phenomena, such as performance deterioration and device destruction by heating, and, at the same time, improves or maintains other performances, thereby achieving high gain, high efficiency, high linearity, and wide bandwidth characteristics. Therefore, the differential amplifier can be easily designed as undesired effects of parasitic resistor of emitter or via or bonding wire, etc. for the differential amplifier are reduced in a differential mode.
摘要:
Disclosed herein is a differential amplifier using body-source cross coupling. In a common gate differential amplifier in which common gate amplifiers are implemented in a differential structure, since the bodies of the common gate amplifiers are cross coupled to the sources of the opposite common gate amplifiers, it is possible to increase transconductance due to body effect to improve a gain. Since the potential of the body is equal to that of the source in a DC mode, a breakdown voltage reduction problem is alleviated.
摘要:
A fabric having an improved winding property, and more particularly to a fabric having an improved winding property, which simultaneously has an excellent winding property and excellent mechanical properties and exhibits an effect of preventing dye migration in fabric coating, and a commodity including the same.
摘要:
A mobile terminal fabricated through co-injection molding is provided. The mobile terminal includes a first case and a second case coupled to the first case. The first case includes a main body having a keypad and a cover formed on the main body. The cover is co-injection molded with the main body whereby no parting lines are formed between the cover and the main body. A method of forming a case of a mobile terminal is also provided. The method includes injection molding a main body using a first resin material, the main body having a keypad, and injection molding a cover onto the main body using a second resin material different from the first resin material, whereby no parting lines are formed between the cover and the main body.
摘要:
Disclosed are ceramic-polymer composite consisting of aggregates of dielectric ceramic particles and polymer resin, and a fabrication method thereof, the method including aggregating dielectric ceramic particles to create aggregates, melting polymer resin in a solvent to prepare a polymer solution, dispersing the aggregates in the polymer solution to prepare a mixed solution, and hardening the mixed solution to obtain ceramic-polymer composites.
摘要:
A light guide member capable of guiding light received from at least a first light source and second light source, wherein the first light source is spaced a distance D3 from the second light source. The light guide member may include a first side including a plurality of first grooves extending along a first direction and a plurality of second grooves extending along the first direction, wherein the first grooves may have a first pitch and the second grooves have a second pitch, the first pitch being different from the second pitch.
摘要:
The present invention relates to a method of forming junctions of a semiconductor device. According to the method of forming junctions of a semiconductor device in accordance with an aspect of the present invention, there is provided a semiconductor substrate in which a transistor including the junctions are formed. A first thermal treatment process for forming a passivation layer over the semiconductor substrate including the junctions is performed. Here, the passivation layer functions to prevent impurities within the junctions from being drained. A pre-metal dielectric layer is formed over the semiconductor substrate including the passivation layer.