Abstract:
[Object] To exactly and efficiently store image data of cells without overloading a user.[Solution] An information processing device according to the present technology includes: a determination unit that determines importance related to a cell-specific event of a cell, using image data obtained from a time-series imaging process targeting the cell; and a control unit that controls a process regarding setting for a target of acquisition of image data in the time-series imaging process, on the basis of a determination result of the importance.
Abstract:
[Object] To enable analysis of a change of a cell with high accuracy. [Solution] Provided is an information processing device including: a detector decision unit configured to decide at least one detector in accordance with an analysis method; and an analysis unit configured to perform analysis according to the analysis method using the at least one detector decided by the detector decision unit.
Abstract:
Techniques for image stabilization may include detecting motion of an apparatus configured to display image data, the image data comprising one or more frames, a first frame of the one or more frames comprising a plurality of layers. The plurality of layers may be processed to correct for the detected motion. The processing may comprise applying a different degree of motion correction to a first layer of the plurality of layers than to a second layer of the plurality of layers. Such techniques may be performed via an apparatus comprising a display control unit configured to cause the image data to be displayed, and a motion correction unit configured to perform the processing.
Abstract:
[Object] To analyze a strain of a biological sample more accurately. [Solution] Provided is an information processing device including: a setting unit configured to set at least one region of interest from one captured image constituting a dynamic image for a biological sample; an analysis object specifying unit configured to specify an analysis object for the at least one region of interest; a detection unit configured to detect a motion of the analysis object in the dynamic image; and an analysis unit configured to analyze a strain of the biological sample related to the at least one region of interest on a basis of the detected motion of the analysis object.
Abstract:
An imaging system, comprising a controller configured to control the imaging system to: capture a first image of a sample, the first image being one of a bright field image, a phase difference image, and a differential interference image; and capture, based at least in part on information obtained from the first image, a second, image of the sample, the second image being a different type of image than the first image.
Abstract:
[Object] To more precisely determine an event regarding a biological sample. [Solution] An information processing device according to the present technology includes: a first information acquisition section that acquires first information on the basis of a still image in a frame corresponding to a predetermined time point, from among a plurality of images of a biological sample captured in a time-series manner; a second information acquisition section that acquires second information on the basis of an interframe change of the plurality of images in a predetermined period; and a determination section that determines an event regarding the biological sample, using the first information and the second information.
Abstract:
An image processing apparatus includes an output value obtaining unit, a first interpolation unit, a second interpolation unit, an image generation unit, and a first edge detection unit. The output value obtaining unit obtains respective output values of a plurality of light-receiving elements from an image sensor including the plurality of light-receiving elements arranged two-dimensionally. The first interpolation unit uses a first interpolation algorithm to interpolate a pixel value. The second interpolation unit uses a second interpolation algorithm to interpolate a pixel value. The image generation unit generates an image based on a pixel value, which is interpolated by the first interpolation unit. The first edge detection unit detects an edge using a first edge detection algorithm based on a pixel value, which is interpolated by the second interpolation unit.
Abstract:
An image processing device and image processing method are provided. A device for controlling display of a sequence of images of living objects obtained through microscopy may comprise a processor and a storage unit. The storage unit may store a program which, when executed by the processor, causes the processor to perform acts. The acts may include acquiring a first sequence of first images of living objects obtained through microscopy. The acts may further include extracting a second sequence of second images from the first sequence of first images, wherein a number of second images in the second sequence is less than a number of first images in the first sequence. The acts may further include controlling a display device to display the second sequence of second images.