摘要:
An apparatus and method provide MAC logic enabling the use of two or more reverse link rate controls at the same time in one or more sectors of a radio base station. That enables the base station to control reverse link loading via reverse link rate control, while assigning mobile stations to the type of reverse link rate control best suited to their needs. For example, the base station MAC logic may implement both a common rate controller that generates per-sector rate control commands, and a dedicated rate controller that generates per-user rate control commands and assign mobile stations having relatively lax reverse link service needs to the common rate controller, while assigning mobile stations having more demanding reverse link service requirements to the dedicated rate control. More than two rate controls can be implemented, and exemplary choices include per-user, per-sector, per-group, and scheduled rate control in any combination.
摘要:
A radio base station performs reverse link rate control in a wireless communication network by “stealing” bits on a forward common power control channel. The forward common power control channel is divided into a plurality of frames, with each frame including a plurality of power control groups and each power control group including a plurality of power control slots. The radio base station may dynamically select power control slots depending on user demand to be used for reverse link rate control.
摘要:
A radio base station performs reverse link rate control in a wireless communication network by “stealing” bits on a forward common power control channel. The forward common power control channel is divided into a plurality of frames, with each frame including a plurality of power control groups and each power control group including a plurality of power control slots. The radio base station may dynamically select power control slots depending on user demand to be used for reverse link rate control.
摘要:
A communication network node, such as a radio base station or base station controller in a wireless communication network, is configured to monitor and control ingress and egress data congestion. As such, node-based congestion monitoring provides a method of flow control between network nodes and, as such, for example, it may be used to control congestion on backhaul links between radio base stations and base station controllers, and on sidehaul links between base station controllers. In one embodiment, the node monitors egress and ingress data congestion conditions, and marks ingress data incoming to the node to indicate congestion. For example, if ingress data markings indicate ingress data congestion, the node can send signaling to initiate a reduction in the amount of data being sent to the node, e.g., a reduction in ingress data rates. If ingress data markings indicate egress data congestion, the node can reduce egress data rates.
摘要:
A communication network node, such as a radio base station or base station controller in a wireless communication network, is configured to monitor and control ingress and egress data congestion. As such, node-based congestion monitoring provides a method of flow control between network nodes and, as such, for example, it may be used to control congestion on backhaul links between radio base stations and base station controllers, and on sidehaul links between base station controllers. In one embodiment, the node monitors egress and ingress data congestion conditions, and marks ingress data incoming to the node to indicate congestion. For example, if ingress data markings indicate ingress data congestion, the node can send signaling to initiate a reduction in the amount of data being sent to the node, e.g., a reduction in ingress data rates. If ingress data markings indicate egress data congestion, the node can reduce egress data rates.
摘要:
Implementations relate to systems and methods for encoding block data to deliver content to a mobile wireless or other device. Content, such as audio, video or textual content, can be generated for broadcast in source blocks that are decomposed into a set of high priority blocks and a set of low priority blocks. Forward error correction is performed on the set of high priority blocks and set of low priority blocks to generate a set of repair symbols for use in reconstructing aggregate transmission blocks of content. The set of low priority blocks and set of repair symbols for a subsequent period can be shifted or inserted into an aggregate transmission block of a prior period. When a request to change channels is received, the decoding of the high priority block corresponding to the content of the new channel can begin before subsequent aggregate transmission blocks are received.