摘要:
A radio base station performs reverse link rate control in a wireless communication network by “stealing” bits on a forward common power control channel. The forward common power control channel is divided into a plurality of frames, with each frame including a plurality of power control groups and each power control group including a plurality of power control slots. The radio base station may dynamically select power control slots depending on user demand to be used for reverse link rate control.
摘要:
An apparatus and method provide MAC logic enabling the use of two or more reverse link rate controls at the same time in one or more sectors of a radio base station. That enables the base station to control reverse link loading via reverse link rate control, while assigning mobile stations to the type of reverse link rate control best suited to their needs. For example, the base station MAC logic may implement both a common rate controller that generates per-sector rate control commands, and a dedicated rate controller that generates per-user rate control commands and assign mobile stations having relatively lax reverse link service needs to the common rate controller, while assigning mobile stations having more demanding reverse link service requirements to the dedicated rate control. More than two rate controls can be implemented, and exemplary choices include per-user, per-sector, per-group, and scheduled rate control in any combination.
摘要:
Noise is measured at one or more base stations in a mobile communication system during periodic silence periods. A periodic silence period is defined for at least one carrier that is independent of reverse link channel frame boundaries. The radio base stations transmits silence parameters defining the periodic silence period to mobile stations, which stop transmitting during the periodic silence periods. A time reference is provided to the mobile stations to synchronize the silence periods for all mobile stations.
摘要:
A radio base station performs reverse link rate control in a wireless communication network by “stealing” bits on a forward common power control channel. The forward common power control channel is divided into a plurality of frames, with each frame including a plurality of power control groups and each power control group including a plurality of power control slots. The radio base station may dynamically select power control slots depending on user demand to be used for reverse link rate control.
摘要:
A wireless communication network receives packet data transmissions from a mobile station, tracks the occurrence of retransmission requests sent to the mobile station responsive thereto, and modifies the radio link assignments for the mobile station based at least in part on said tracking. For example, a base station controller may be configured to manage the active set of a mobile station based on the number and/or frequency of NACK messages sent by the radio base stations in the mobile station's active set(s) responsive to packet data transmissions from the mobile station. The ACK/NACK response of a radio base station to mobile station transmissions may be used to detect link imbalance, identify poor reverse link channels, etc. The base station controller can add or change radio links based on the ACK/NACK response to improve reverse link performance, trigger voice call handoff, correct link imbalance, etc.
摘要:
Noise is measured at one or more base stations in a mobile communication system during periodic silence periods. A periodic silence period is defined for at least one carrier that is independent of reverse link channel frame boundaries. The radio base stations transmits silence parameters defining the periodic silence period to mobile stations, which stop transmitting during the periodic silence periods. A time reference is provided to the mobile stations to synchronize the silence periods for all mobile stations.
摘要:
Two or more different sets of access parameters are stored in mobile station memory. When the mobile station sends an access message on the reverse access channel, it selects a set of access parameters based on the type of service. For high priority services, the mobile station selects a set of access parameters that reduces call setup latency. The network can change a selected set of access parameters by sending an access parameter message containing the updated parameter values. The access parameter message includes a priority field indicating the selected set of access parameters to be updated.
摘要:
Broadcast control messages are repetitively transmitted to said mobile stations over successive control channel cycles to meet minimum recommended periodicity requirements. To increase paging capacity, the frequency of one or more of the broadcast control messages may be varied to avoid unfavorable pairings of the broadcast control messages within a single control channel cycle.
摘要:
Call setup latency for a packet data call dormant reactivation is reduced by bypassing service negotiation and/or RLP Sync exchange procedures using values stored at the BSC. Previously negotiated parameters may be used to bypass service negotiation. A non-zero RTT value, calculated by a previously performed RLP Sync exchange, is stored at the BSC, and transmitted to the MS upon dormant reactivation. The MS uses the RTT to calculate a RLP REXMIT_TIMER value, bypassing a RLP Sync exchange with the BSC. The service configuration parameters and non-zero RTT may be stored at the BSC in the RLP BLOB of a SCR, which may be transmitted to the MS in an SCM. The SCR may store multiple records, each containing negotiated service configuration parameters and/or a non-zero RTT associated with a service instance, selected by a SRID transmitted by the MS.
摘要:
In mobile user equipment (UE) configured to allow for operation on multiple wireless communication networks, such as on a TD-SCDMA network or on a TDD-LTE network, an improved method for handing over a circuit-switched call is offered. The proposed circuit-switched fallback procedure, employing an improved UE hardware architecture, allows for certain connection setup procedures to occur in parallel, such as the UE pre-acquiring the TD-SCDMA cell. The parallel operations thus speed up the circuit-switched fallback procedure and reduce existing delays in executing circuit-switched fallback from TDD-LTE to TD-SCDMA networks.