摘要:
A scheduler associated with a base station of a wireless communication network dynamically compensates for uplink bandwidth that has been re-assigned (stolen) by a mobile station (MS) to transmit a control message. The scheduler allocates a preset amount of bandwidth to the MS for data transmission. The scheduler detects bandwidth stealing activity and evaluates when bandwidth stealing is justified on he part of the MS. The scheduler provides additional bandwidth to appropriately compensate for the stolen bandwidth when bandwidth stealing is justified, in order to maintain the quality of service of the data traffic connection.
摘要:
A scheduler associated with a base station of a wireless communication network dynamically compensates for uplink bandwidth that has been re-assigned (stolen) by a mobile station (MS) to transmit a control message. The scheduler allocates a preset amount of bandwidth to the MS for data transmission. The scheduler detects bandwidth stealing activity and evaluates when bandwidth stealing is justified on he part of the MS. The scheduler provides additional bandwidth to appropriately compensate for the stolen bandwidth when bandwidth stealing is justified, in order to maintain the quality of service of the data traffic connection.
摘要:
A wireless communication system as described here employs control signaling for contention-based uplink access from user equipment devices to a base station. Contention-based access configuration is performed via physical downlink control channel signaling. Configuration data sent to the user equipment devices identifies multiple contention-based access zones, along with minimum power headroom values for each contention-based access zone. A probability factor may also be used to lower collision possibility by influencing whether the user equipment devices perform contention-based uplink access. An uplink grant message can be used to acknowledge contention-based transmission; contention resolution is achieved implicitly via the uplink grant.
摘要:
A method, a system and an evolved nodeB (eNodeB) that enable user equipment (UE) to switch between carrier groups in a multi-carrier network. A carrier selection and switching (CSS) utility identifies a first and a second set of pre-configured groups of carrier frequencies that are subsequently assigned to a particular UE. The CSS utility notifies the UE of the assigned, pre-configured groups of carrier frequencies and provides the UE with system parameters associated with the first and second pre-configured groups of carrier frequencies. The CSS utility signals the UE to initiate communication via the first preconfigured group of carriers. Based on the occurrence of pre-established conditions, the CSS utility utilizes a switch signal to indicate via physical downlink control channel (PDCCH) to the UE (a) when to begin utilizing the second group of preconfigured carrier frequencies and (b) when to make subsequent switches between carrier groups.
摘要:
A user equipment and method for contention-based uplink access to a base station. Contention-based configuration data identifies multiple contention-based access zones along with minimum power headroom values for each contention-based access zone. The user equipment devices can randomly select a demodulation reference signal parameter value when transmitting on a selected contention-based access zone.
摘要:
A method and apparatus are disclosed that includes a user equipment (104) sending a first buffer status report to an eNode B (102) to (210) indicate an amount of data in a buffer that is to be sent. After the first buffer status report is sent, the amount of data in the buffer can change (216) so that the user equipment sends (218) a second buffer status report to indicate the change in the amount of data in the buffer that is to be sent.
摘要:
A method, a system and an evolved nodeB (eNodeB) that enable user equipment (UE) to switch between carrier groups in a multi-carrier network. A carrier selection and switching (CSS) utility identifies a first and a second set of pre-configured groups of carrier frequencies that are subsequently assigned to a particular UE. The CSS utility notifies the UE of the assigned, pre-configured groups of carrier frequencies and provides the UE with system parameters associated with the first and second pre-configured groups of carrier frequencies. The CSS utility signals the UE to initiate communication via the first preconfigured group of carriers. Based on the occurrence of pre-established conditions, the CSS utility utilizes a switch signal to indicate via physical downlink control channel (PDCCH) to the UE (a) when to begin utilizing the second group of preconfigured carrier frequencies and (b) when to make subsequent switches between carrier groups.
摘要:
A base station employs control signaling for contention-based uplink access from user equipment devices to the base station. Contention-based access configuration is performed via physical downlink control channel signaling. Configuration data sent to the user equipment devices identifies multiple contention-based access zones, along with minimum power headroom values for each contention-based access zone. A probability factor may be used to lower collision possibility by influencing whether the user equipment devices perform contention-based uplink access.
摘要:
A wireless communication system as described here employs control signaling for contention-based uplink access from user equipment devices to a base station. Contention-based access configuration is performed via physical downlink control channel signaling. Configuration data sent to the user equipment devices identifies multiple contention-based access zones, along with minimum power headroom values for each contention-based access zone. A probability factor may also be used to lower collision possibility by influencing whether the user equipment devices perform contention-based uplink access. An uplink grant message can be used to acknowledge contention-based transmission; contention resolution is achieved implicitly via the uplink grant.
摘要:
An apparatus and method for enabling Buffer Status Reports in a Long Term Evolution communication system includes a step (400) of determining a higher than normal likelihood of receiving a first buffer status report on a first uplink grant. A next step (402) includes increasing a reliability of the first uplink grant in response the higher than normal likelihood. Other next steps can include detecting (404) that the first Buffer Status Report transmission Hybrid Automatic Repeat Request process failed and triggering (406) a second Buffer Status Report transmission in the user equipment in a next uplink grant.