摘要:
A transmission cable including a transmission line, at least two electrically conductive line segments separated by a non-conductive gap, a bridging unit including at least one electrically conductive bridge segment capable of bridging the non-conductive gap, and a switching unit arranged to move the bridging unit and/or the transmission line to electrically connect the two line segments by closing the non-conductive gap using the bridge segment or to electrically disconnect the two line segments by opening the non-conductive gap.
摘要:
An interventional device (12) is configured to be positioned in a body and includes an electrically operable unit (E1, E2) configured to carry out an interaction with the body upon a receipt of electric power. The device further includes a sensor (2) configured for wirelessly receiving electromagnetic energy from a remote source. The sensor is configured as a resonant circuit (2a, 2b) which converts the received electromagnetic energy into the electric power. The electrically operable device may include a diagnostic and/or therapeutic module.
摘要:
The invention relates to a magnetic resonance imaging system comprising a main magnet coil (2) for generating a uniform, steady magnetic field within an examination volume, a number of gradient coils (4, 5, 6) for generating switched magnetic field gradients in different spatial directions within the examination volume, at least one cardiac RF coil (11) for transmitting RF pulses to and/or receiving MR signals from the chest region of a body (10) of a patient positioned in the examination volume, a control unit (13) for controlling the temporal succession of RF pulses and switched magnetic field gradients, and a reconstruction unit (15) for reconstructing a MR image from the MR signals. In order to enable quick and safe defibrillation at any time during a MR imaging procedure, the invention proposes that at least one opening (19, 22) is provided in the cardiac RF coil (11), through which opening (19, 22) a portion of the skin surface in the chest region of the body (10) is accessible, wherein the magnetic resonance imaging system further comprises a defibrillator unit (17) connected to at least one defibrillator electrode (23) fitting through the at least one opening (19, 22) provided in the cardiac RF coil (11). Alternatively, the invention proposes that at least one defibrillator cable (30) is affixed to the cardiac RF coil (11), wherein the defibrillator unit (17) is connectable to at least one defibrillator electrode pad (26) via the at least one defibrillator cable (30).
摘要:
An electrically conductive transmission line for transmitting RF signals, in particular for transmitting MR signals between a transmission and/or receiving coil and a transmitting and/or receiving unit, by which separate known matching networks can be avoided or reduced. A transmission line is proposed comprising a plurality of lead segments coupled by transformers having a transformer impedance ZL placed between two neighboring lead segments, wherein for power matching of the two transformers placed at opposite ends of a lead segment, the lead segment has a lead segment impedance Z0 or a dielectric constant ∈r and wherein the lead segment has a short length l. Thus, the lead segments themselves provide the matching of the transformers, and separate matching circuits are no longer needed.
摘要:
An electrically conductive transmission cable for supplying a DC signal safely to an electrical device in the presence of radio-frequency (RF) fields in a magnetic resonance (MR) is disclosed herein. The transmission cable comprises a transmission line (STL) comprising at least a first segment (S1) and a second segment (S2), wherein the first and second segments are electrically connected to each other by a reactive coupling unit (103), and a rectifier unit (101) connected to the transmission line and configured to extract the DC signal (203) from the modulated DC signal (201). The extracted DC signal may be supplied to an electrical device or used for cardiac pacing. The transmission cable finds application in auxiliary devices used in an MR environment, for example an interventional catheter with or without an active tracking circuit (301).
摘要:
The invention relates to a method of MR imaging of a moving portion (22) of a body (10) of a patient placed in an examination volume of a MR device (1). For the purpose of enabling improved interventional MR imaging with motion compensation, the invention proposes that the method comprises the steps of: a) collecting tracking data from an interventional instrument (19) introduced into the portion (22) of the body (10), b) subjecting the portion (22) of the body (10) to an imaging sequence for acquiring one or more MR signals therefrom, wherein parameters of the imaging sequence are adjusted on the basis of the tracking data, c) acquiring a MR signal data set by repeating steps a) and b) several times, d) reconstructing one or more MR images from the MR signal data set.
摘要:
The present invention relates to a device (100) and method for interfacing a signal transmission/reception device (200) and a catheter (300). A signal transmitted by the signal transmission/reception device (200) and supplied to the device (100) via a first interface (102, 104, 106, 108) can be sensed by a first sensor (114). The sensed signal may be adjusted by an adjustment unit (116). The adjusted signal can be output via a second interface (110, 112) and supplied to the catheter (300). In this way, a resistance loss caused by a conductor (302, 304) of the catheter (300) may be compensated for.
摘要:
The invention relate to an interventional device (I2) conceived to be positioned in a body and comprising an electrically operable unit (E1, E2) conceived to carry out an interaction with the body upon a receipt of electric power, wherein the device further comprises a sensor (2) arranged for wirelessly receiving electromagnetic energy from a remote source, the said sensor being arranged as a resonant circuit (2a, 2b) and being conceived to convert the received electromagnetic energy into the said electric power. The electrically operable device may comprise a diagnostic and/or therapeutic module.
摘要:
The invention relates to electrophysiology catheter systems and their use, such as in an MRI environment, and in particular to analysis of electric signals from such. An electrophysiology (EP) catheter with a plurality of electrically isolated electrode segments arranged in longitudinally spaced bands around the catheter is used to detect electric signals. A workstation receives the electrical signals which are then processed by a processing unit. Electric signals from electrode segments can be used to determine roll angle information of the catheter in relation to patient anatomy by determining signals from electrode segments in contact with tissue. Also, electric signals can be used to extract a reference signal that can be used to correct for gradient induced artifacts.
摘要:
The present invention relates to a catheter (6) comprising: a connector (65, 66) at a proximal side of the catheter for connecting the catheter to an external signal transmission/receiving unit (10) for transmitting and/or receiving signals, an electrode (63, 64) at a distal side of the catheter, and an electrical connection including an electrical wire (61, 62) for electrically connecting the electrode and the connector for the transmission of signals between the electrode and the connector, wherein the electrical connection has a high electrical resistance of at least 1 kΩ, in particular of at least 5 kΩ. Thus, the present invention provides a solution to prevent excessive heating during EP interventions under MR guidance by using highly resistive wires and or lumped resistors as connections within catheters.