摘要:
A growth mask provided for the deposition of a threshold adjusting semiconductor alloy may be formed on the basis of a deposition process, thereby obtaining superior thickness uniformity. Consequently, P-channel transistors and N-channel transistors with an advanced high-k metal gate stack may be formed with superior uniformity.
摘要:
When forming sophisticated gate electrode structures requiring a threshold adjusting semiconductor alloy for one type of transistor, a recess is formed in the corresponding active region, thereby providing superior process uniformity during the deposition of the semiconductor material. Due to the recess, any exposed sidewall surface areas of the active region may be avoided during the selective epitaxial growth process, thereby significantly contributing to enhanced threshold stability of the resulting transistor including the high-k metal gate stack.
摘要:
When forming sophisticated gate electrode structures requiring a threshold adjusting semiconductor alloy for one type of transistor, a recess is formed in the corresponding active region, thereby providing superior process uniformity during the deposition of the semiconductor material. Due to the recess, any exposed sidewall surface areas of the active region may be avoided during the selective epitaxial growth process, thereby significantly contributing to enhanced threshold stability of the resulting transistor including the high-k metal gate stack.
摘要:
A growth mask provided for the deposition of a threshold adjusting semiconductor alloy may be formed on the basis of a deposition process, thereby obtaining superior thickness uniformity. Consequently, P-channel transistors and N-channel transistors with an advanced high-k metal gate stack may be formed with superior uniformity.
摘要:
In sophisticated transistor elements, long-term threshold voltage shifts in transistors comprising a threshold adjusting semiconductor alloy may be reduced by reducing the roughness of an interface formed between the threshold adjusting semiconductor material and the gate dielectric material. To this end, a portion of the threshold adjusting semiconductor material may be oxidized and may be removed prior to forming the high-k dielectric material.
摘要:
In sophisticated transistor elements, long-term threshold voltage shifts in transistors comprising a threshold adjusting semiconductor alloy may be reduced by reducing the roughness of an interface formed between the threshold adjusting semiconductor material and the gate dielectric material. To this end, a portion of the threshold adjusting semiconductor material may be oxidized and may be removed prior to forming the high-k dielectric material.
摘要:
In sophisticated transistor elements, long-term threshold voltage shifts in transistors comprising a threshold adjusting semiconductor alloy may be reduced by reducing the roughness of an interface formed between the threshold adjusting semiconductor material and the gate dielectric material. To this end, a portion of the threshold adjusting semiconductor material may be oxidized and may be removed prior to forming the high-k dielectric material.
摘要:
In sophisticated transistor elements, long-term threshold voltage shifts in transistors comprising a threshold adjusting semiconductor alloy may be reduced by reducing the roughness of an interface formed between the threshold adjusting semiconductor material and the gate dielectric material. To this end, a portion of the threshold adjusting semiconductor material may be oxidized and may be removed prior to forming the high-k dielectric material.
摘要:
The threshold voltage of a sophisticated transistor may be adjusted by providing a specifically designed semiconductor alloy in the channel region of the transistor, wherein a negative effect of this semiconductor material with respect to inducing a strain component in the channel region may be reduced or over-compensated for by additionally incorporating a strain-adjusting species. For example, a carbon species may be incorporated in the channel region, the threshold voltage of which may be adjusted on the basis of a silicon/germanium alloy of a P-channel transistor. Consequently, sophisticated metal gate electrodes may be formed in an early manufacturing stage.
摘要:
The threshold voltage of a sophisticated transistor may be adjusted by providing a specifically designed semiconductor alloy in the channel region of the transistor, wherein a negative effect of this semiconductor material with respect to inducing a strain component in the channel region may be reduced or over-compensated for by additionally incorporating a strain-adjusting species. For example, a carbon species may be incorporated in the channel region, the threshold voltage of which may be adjusted on the basis of a silicon/germanium alloy of a P-channel transistor. Consequently, sophisticated metal gate electrodes may be formed in an early manufacturing stage.