摘要:
An inductive battery system includes a primary coil system (102) and an inductive battery (122). The primary coil system (102) provides inductive power (106). The inductive battery (122) includes a secondary coil system (108), charge circuitry (110), output circuitry (112), and an internal battery (114). The secondary coil system (108) receives the inductive power (106) and provides electrical power. The charge circuitry (110) receives the electrical power and supplies suitable power to the internal battery (114) for charging and/or device operation. The output circuitry (112) receives electrical energy from the internal battery (114) and provides the electrical energy external to the system (100) as external power (124). The internal battery (114) stores the received electrical power from the charge circuitry (110) and supplies the electrical power to the output circuitry (112).
摘要:
A lighting system (10) is provided that includes at least one lighting device (14A,14B,14C), a plurality of external power sources (20,22,24,26,27) and an internal power source (16) applying a first electrical current to illuminate at least one lighting source (18A,18B,18C), wherein the internal power source (16) supplies the first electrical current. Further, a fuel gauging system and method (1230) detects an electrochemical composition of a power source (16,20,22,24,26,27), which can be at least one of the internal power source (16) and the external power source (20,22,24,26,27), and then determines a state of charge of the power source (16,20,22,24,26,27) based upon the determined electrochemical composition of the power source (16,20,22,24,26,27).
摘要:
A lighting system is provided that includes at least one lighting device, at least one connector, and a plurality of external power sources. The at least one lighting device includes at least one lighting source, and an internal power source applying a first electrical current to illuminate the at least one lighting element, wherein the internal power source supplies the first electrical current. The at least one connector electrically connects to the at least one lighting device. The plurality of external power sources include at least first and second external power sources that are adapted to be electrically connected to the at least one lighting device by the at least one connector. Further, a fuel gauging system and method detects an electrochemical composition of a power source, which can be at least one of the internal power source and the external power source, and then determines a state of charge of the power source based upon the determined electrochemical composition of the power source.
摘要:
A battery power routing circuit includes a first battery contact block with first positive battery electrical contact and a first negative battery electrical contact, and a second battery contact block, with a second positive battery electrical contact and a second negative battery electrical contact. A positive terminal is in electrical communication with the first and second positive battery electrical contacts, and a negative terminal is in electrical communication with the first and second battery negative electrical contacts.
摘要:
A lighting system is provided that includes at least one lighting device, at least one connector, and a plurality of external power sources. The at least one lighting device includes at least one lighting source, and an internal power source applying a first electrical current to illuminate the at least one lighting element, wherein the internal power source supplies the first electrical current. The at least one connector electrically connects to the at least one lighting device. The plurality of external power sources include at least first and second external power sources that are adapted to be electrically connected to the at least one lighting device by the at least one connector. Further, a fuel gauging system and method detects an electrochemical composition of a power source, which can be at least one of the internal power source and the external power source, and then determines a state of charge of the power source based upon the determined electrochemical composition of the power source.
摘要:
An inductive battery system includes a primary coil system (102) and an inductive battery (122). The primary coil system (102) provides inductive power (106). The inductive battery (122) includes a secondary coil system (108), charge circuitry (110), output circuitry (112), and an internal battery (114). The secondary coil system (108) receives the inductive power (106) and provides electrical power. The charge circuitry (110) receives the electrical power and supplies suitable power to the internal battery (114) for charging and/or device operation. The output circuitry (112) receives electrical energy from the internal battery (114) and provides the electrical energy external to the system (100) as external power (124). The internal battery (114) stores the received electrical power from the charge circuitry (110) and supplies the electrical power to the output circuitry (112).
摘要:
A lighting device is generally illustrated having a light body having forward facing light sources including a visible white light source, visible colored light source and an infrared light source. Additionally, a side facing light source is provided. The light body also includes switches for activating the visible light sources and a three-position switch for activating the IR light source and the side facing light source. The light source of the lighting device may further be controlled based on a detected chemistry composition of the power source.
摘要:
A lighting device is generally illustrated having a light body having forward facing light sources including a visible white light source, visible colored light source and an infrared light source. Additionally, a side facing light source is provided. The light body also includes switches for activating the visible light sources and a three-position switch for activating the IR light source and the side facing light source. The light source of the lighting device may further be controlled based on a detected chemistry composition of the power source.