摘要:
An upgrade method in which Raman amplification is added to an existing transmission system to provide an increase in power budget and permit a substantial increase in transmission capacity either by time division multiplexing (TDM), wavelength division multiplexing (WDM), or a combination thereof. The power budget improvement permits higher transmission capacity by increasing either a single channel data rate and/or the number of wavelength division multiplexed data channels that can be accommodated by existing fiber links.
摘要:
A low noise optical fiber Raman amplifier (FRA) comprises an upstream and a downstream length of silica-based amplifier fiber, of combined length >200 m, typically >1 km, with an optical isolator disposed between the upstream and downstream lengths of amplifier fiber such that passage of backscattered signal radiation from the latter to the former is substantially blocked. In preferred embodiments counter-propagating pump radiation is coupled into the downstream length of amplifier fiber, and wavelength-selective means are provided for shunting the pump radiation around the optical isolator. The described FRA is advantageously incorporated into optical fiber communication systems. Exemplarily it can serve as power amplifier, as pre-amplifier, or as in-line amplifier. For instance, it can be used to replace conventional opto-electronic repeaters in existing 1.3 .mu.m fiber communication systems, or it can be used as power amplifier in a multi-subscriber optical fiber CATV system. In a still further exemplary embodiment, the FRA is used as a distributed pre-amplifier in a remotely pumped fiber communication system.
摘要:
We have found that the conversion efficiency of a Er/Yb-doped cladding pumped fiber amplifier increases with increasing signal input power. Thus, preamplification of the input signal by means of an Er-doped fiber amplifier can result in increased conversion efficiency of the cladding pumped power amplifier. Such increased efficiency is desirable, lessening heat removal problems and/or facilitating increased reliability.
摘要:
In accordance with the invention an optical fiber communication system comprising a source of optical signals and an optical fiber transmission line is provided with one or more multiple-order distributed Raman effect amplifiers downstream of the source for amplifying the transmitted signals. As compared with a communication system using conventional first order Raman amplifiers, multiple-order amplifier systems can have reduced noise, longer fiber span lengths and reduced nonlinearities. In a preferred embodiment the system uses signal wavelengths in the range 1530-1570 nm, first order Raman pumping at 1430-1475 nm and second order pumping at about 1345 nm. Advantageously, the second order pump light is copropagating with the signal light and the first order pump is counterpropagating with the signal.
摘要:
An optical fiber amplifier is pumped by a fiber pump laser which has a pair of separate active media within a common resonator. The fiber gain section of the amplifier is also located within the resonator.
摘要:
In an optical fiber light source a section of multimode fiber is interposed between an energizing laser (e.g,, a diode laser) and a single mode fiber active medium. In a preferred embodiment the single mode fiber active medium is surrounded by a multimode cladding coupled to the multimode fiber. The source may serve as a pump laser for a fiber amplifier or as an amplified spontaneous emission source. Arrangements for coupling several energizing lasers to the active medium are also described.
摘要:
An optical fiber amplifier is pumped by a pair of pump lasers which have at least partially overlapping resonators. In one embodiment, the fiber gain section of the amplifier is located external to the resonators. In another embodiment, the coupler, which couples the pump lasers to the gain section, is located at least partially within said resonators. In a preferred embodiment the resonators are provided with polarization selection properties, and the outputs of the pump lasers are coherent.
摘要:
A high speed optical communication system (≧10 Gbit/s) is compensated for temperature variation by providing it with one or more automatic dispersion compensation modules. Each module has an adjustable dispersion element, a data integrity monitor and a feedback network whereby the monitor adjusts the dispersion element to compensate for temperature variation. In a preferred embodiment the dispersion compensating modules comprise chirped fiber Bragg gratings in which the chirp is induced in the grating by passing a current along distributed thin film heaters deposited along the length of the fiber. The magnitude of the applied current determines the dispersion of the grating. A data integrity monitor is configured to sense the integrity of transmitted data and to provide electrical feedback for controlling the current applied to the grating.
摘要:
Magnets are used to control the amount of coupling loss between fibers. The fiber ends are attached to magnets and by controllably magnetizing the magnets, the fibers can be pulled apart or brought closer together to vary the amount of coupling loss. Preferably at least one of the magnets is latchable. The advantage of the latchable version is that a predetermined amount of loss can be latchably set by magnetizing the magnets to a particular level and afterwards no additional power is required to maintain the amount of attenuation. This is advantageous compared to other approaches in which power is required continuously to maintain a particular loss level.
摘要:
An optical fiber communication system according to the invention comprises an optical fiber filter that can be manufactured at low cost and that can be conveniently incorporated into the system, substantially like a conventional fiber jumper. The filter comprises a length L of axially uniform optical fiber selected to have substantially no loss (e.g., 20 dB) at a wavelength .lambda..sub.2. The length L will typically be less than 100 m. In one embodiment the optical fiber is a single mode optical fiber at .lambda..sub.1 (e.g., 1.3 .mu.m) that does not have a guided mode at .lambda..sub.2 (e.g., 1.55 .mu.m). In another embodiment the fiber contains a dopant that does substantially not absorb radiation of wavelength .lambda..sub.1, but substantially absorbs at .lambda..sub.2. In the second embodiment, .lambda..sub.1 can be greater than .lambda..sub.2. Fiber filters according to the invention can be advantageously used in a variety of communication systems, and exemplary systems are disclosed.