摘要:
The present invention provides a method of fabricating a microelectronics device. In one aspect, the method comprises depositing a protective layer (510) over a spacer material (415) located over gate electrodes (250) and a doped region (255) located between the gate electrodes (250), removing a portion of the spacer material (415) and the protective layer (510) located over the gate electrodes (250). A remaining portion of the spacer material (415) remains over the top surface of the gate electrodes (250) and over the doped region (255), and a portion of the protective layer (510) remains over the doped region (255). The method further comprises removing the remaining portion of the spacer material (415) to form spacer sidewalls on the gate electrodes (250), expose the top surface of the gate electrodes (250), and leave a remnant of the spacer material (415) over the doped region (255). Source/drains are formed adjacent the gate electrodes 250 and through the remnant of the spacer material (415), and a metal is incorporated into the gate electrodes (250).
摘要:
A method of simultaneously siliciding a polysilicon gate and source/drain of a semiconductor device, and related device. At least some of the illustrative embodiments are methods comprising forming a gate stack over a semiconductor substrate (the gate stack comprising a first polysilicon layer, a first nitride layer, and a second polysilicon layer), forming a second nitride layer over an active region in the semiconductor substrate adjacent to the gate stack, performing a chemical mechanical polishing that stops on the first nitride layer and on the second nitride layer, removing the first nitride layer and the second nitride layer, and performing a simultaneous silicidation of the first polysilicon layer and the active region.
摘要:
A method of simultaneously siliciding a polysilicon gate and source/drain of a semiconductor device, and related device. At least some of the illustrative embodiments are methods comprising forming a gate stack over a semiconductor substrate (the gate stack comprising a first polysilicon layer, a first nitride layer, and a second polysilicon layer), forming a second nitride layer over an active region in the semiconductor substrate adjacent to the gate stack, performing a chemical mechanical polishing that stops on the first nitride layer and on the second nitride layer, removing the first nitride layer and the second nitride layer, and performing a simultaneous silicidation of the first polysilicon layer and the active region.
摘要:
A method of simultaneously siliciding a polysilicon gate and source/drain of a semiconductor device, and related device. At least some of the illustrative embodiments are methods comprising forming a gate stack over a semiconductor substrate (the gate stack comprising a first polysilicon layer, a first nitride layer, and a second polysilicon layer), forming a second nitride layer over an active region in the semiconductor substrate adjacent to the gate stack, performing a chemical mechanical polishing that stops on the first nitride layer and on the second nitride layer, removing the first nitride layer and the second nitride layer, and performing a simultaneous silicidation of the first polysilicon layer and the active region.
摘要:
A method of simultaneously siliciding a polysilicon gate and source/drain of a semiconductor device, and related device. At least some of the illustrative embodiments are methods comprising forming a gate stack over a semiconductor substrate (the gate stack comprising a first polysilicon layer, a first nitride layer, and a second polysilicon layer), forming a second nitride layer over an active region in the semiconductor substrate adjacent to the gate stack, performing a chemical mechanical polishing that stops on the first nitride layer and on the second nitride layer, removing the first nitride layer and the second nitride layer, and performing a simultaneous silicidation of the first polysilicon layer and the active region.
摘要:
A method of forming fully silicided NMOS and PMOS semiconductor devices having independent polysilicon gate thicknesses, and related device. At least some of the illustrative embodiments are methods comprising forming an N-type gate over a semiconductor substrate (the N-type gate having a first thickness), forming a P-type gate over the semiconductor substrate (the P-type gate having a second thickness different than the first thickness), and performing a simultaneous silicidation of the N-type gate and the P-type gate.
摘要:
A method of forming fully silicided NMOS and PMOS semiconductor devices having independent polysilicon gate thicknesses, and related device. At least some of the illustrative embodiments are methods comprising forming an N-type gate over a semiconductor substrate (the N-type gate having a first thickness), forming a P-type gate over the semiconductor substrate (the P-type gate having a second thickness different than the first thickness), and performing a simultaneous silicidation of the N-type gate and the P-type gate.
摘要:
A method of forming fully silicided NMOS and PMOS semiconductor devices having independent polysilicon gate thicknesses, and related device. At least some of the illustrative embodiments are methods comprising forming an N-type gate over a semiconductor substrate (the N-type gate having a first thickness), forming a P-type gate over the semiconductor substrate (the P-type gate having a second thickness different than the first thickness), and performing a simultaneous silicidation of the N-type gate and the P-type gate.
摘要:
Thermal Neutron Detector. The detector includes at least one semiconductor transistor within a circuit for monitoring current flowing through the semiconductor transistor. A film of gadolinium-containing material covers the semiconductor transistor whereby thermal neutrons interacting with the gadolinium-containing material generate electrons that induce a change in current flowing through the semiconductor transistor to provide neutron detection.