Abstract:
A cathode header optic for an x-ray tube includes an elongate trench with opposite trench walls. A cup recess is formed in the trench between the opposite trench walls, and has a bounded perimeter. A cathode element is disposed in the trench at the cup recess. The cathode element is capable of heating and releasing electrons. A secondary cathode optic defining a cathode ring can be disposed about the header optic. The cathode optics can form part of an x-ray tube.
Abstract:
A support structure for x-ray windows including carbon composite ribs, comprising carbon fibers in a matrix. The support structure can comprise a support frame defining a perimeter and an aperture, a plurality of ribs comprising a carbon composite material extending across the aperture of the support frame and carried by the support frame, and openings between the plurality of ribs. A film can be disposed over, carried by, and span the plurality of ribs and disposed over and span the openings.
Abstract:
An x-ray window including a support frame with a perimeter and an aperture. A plurality of ribs can extend across the aperture of the support frame and can be supported or carried by the support frame. Openings exist between ribs to allow transmission of x-rays through such openings with no attenuation of x-rays by the ribs. A film can be disposed over and span the ribs and openings. The ribs can have at least two different cross-sectional sizes including at least one larger sized rib with a cross-sectional area that is at least 5% larger than a cross-sectional area of at least one smaller sized rib.
Abstract:
A cathode header optic for an x-ray tube includes an elongate trench with opposite trench walls. A cup recess is formed in the trench between the opposite trench walls, and has a bounded perimeter. A cathode element is disposed in the trench at the cup recess. The cathode element is capable of heating and releasing electrons. A secondary cathode optic defining a cathode ring can be disposed about the header optic. The cathode optics can form part of an x-ray tube.
Abstract:
An x-ray window comprising a polymer and carbon nanotubes and/or graphene. The carbon nanotubes and/or graphene can be embedded in the polymer. Multiple layers of polymer, carbon nanotubes, and/or graphene may be used. The polymer with carbon nanotubes and/or graphene can be used as an x-ray window support structure and/or thin film.
Abstract:
A support structure for x-ray windows including carbon composite ribs, comprising carbon fibers in a matrix. The support structure can comprise a support frame defining a perimeter and an aperture, a plurality of ribs comprising a carbon composite material extending across the aperture of the support frame and carried by the support frame, and openings between the plurality of ribs. A film can be disposed over, carried by, and span the plurality of ribs and disposed over and span the openings.
Abstract:
An X-ray source includes a magnetic appliance to provide electron beam focusing. The magnetic appliance can provide variably focused and non-focused configurations. The magnetic appliance can include one or more electromagnets and/or permanent magnets. An electric potential difference is applied to an anode and a cathode that are disposed on opposite sides of an evacuated tube. The cathode includes a cathode element to produce electrons that are accelerated towards the anode in response to the electric field between the anode and the cathode. The anode includes a target material to produce x-rays in response to impact of electrons.
Abstract:
An x-ray window comprising a polymer and carbon nanotubes and/or graphene. The carbon nanotubes and/or graphene can be embedded in the polymer. Multiple layers of polymer, carbon nanotubes, and/or graphene may be used. The polymer with carbon nanotubes and/or graphene can be used as an x-ray window support structure and/or thin film.
Abstract:
An x-ray source has an evacuated tube. An anode is disposed in the tube and includes a material configured to produce x-rays in response to impact of electrons. A cathode is disposed in the tube opposing the anode configured to produce electrons accelerated towards the anode in response to an electric field between the anode and the cathode. A flange extends from the cathode toward the anode, and has a smaller diameter than the evacuated tube. The flange extends closer to the anode than an interface between the cathode and the tube thus forming a reduced-field region between the evacuated tube and the flange.