Abstract:
Electron beam emitter, in particular for sterilization of packaging material, comprising a housing and an insert, wherein the housing comprises a first annular channel for guiding a medium, and wherein the first annular channel at least partially surrounds the insert and is adapted to provide the medium, characterized in that the first annular channel is at least partly formed by the insert.
Abstract:
Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful intermediates and products, such as energy, fuels, foods or materials. For example, systems and methods are described that can be used to treat feedstock materials, such as cellulosic and/or lignocellulosic materials, while cooling equipment and the biomass to prevent overheating and possible distortion and/or degradation. The biomass is conveyed by a conveyor, which conveys the biomass under an electron beam from an electron beam accelerator. The conveyor can be cooled with cooling fluid. The conveyor can also vibrate to facilitate exposure to the electron beam. The conveyor can be configured as a trough that can be optionally cooled.
Abstract:
Methods and systems are described for processing cellulosic and lignocellulosic materials and useful intermediates and products, such as energy and fuels. For example, irradiating methods and systems are described to aid in the processing of the cellulosic and lignocellulosic materials. The electron beam accelerator has multiple windows foils and these foils are cooled with cooling gas. In one configuration a secondary foil is integral to the electron beam accelerator and in another configuration the secondary foil is part of the enclosure for the biomass conveying system.
Abstract:
Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful intermediates and products, such as energy, fuels, foods or materials. For example, systems and methods are described that can be used to treat feedstock materials, such as cellulosic and/or lignocellulosic materials, in a vault in which the equipment is protected from radiation and hazardous gases by equipment enclosures. The equipment enclosures may be purged with gas.
Abstract:
A radiation window foil is provided for an X-ray radiation window. It includes a continuous window layer with a first side and a second side. A first mesh or grid layer is stacked on or bonded to the first side of the continuous window layer. A second mesh or grid layer is stacked on or bonded to the second side of the continuous window layer.
Abstract:
For manufacturing a radiation window for an X-ray measurement apparatus, and etch stop layer is first produced on a polished surface of a carrier. A thin film deposition technique is used to produce a structural layer on an opposite side of said etch stop layer than said carrier. The combined structure comprising said carrier, said etch stop layer, and said structural layer is attached to a region around an opening in a support structure with said structural layer facing said support structure. The carrier is etched away.
Abstract:
Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful intermediates and products, such as energy, fuels, foods or materials. For example, systems and methods are described that can be used to treat feedstock materials, such as cellulosic and/or lignocellulosic materials, in a vault in which the equipment is protected from radiation and hazardous gases by equipment enclosures. The equipment enclosures may be purged with gas.
Abstract:
An improved radiation window comprises a film permeable to radiation disposed on a support structure. The support structure comprises a primary transmissive area comprising a plurality of support members defining a plurality of apertures for radiation to pass through; a flange disposed around the periphery of the primary transmissive area having generally greater mechanical rigidity than the primary transmissive area; and a transition region disposed between, and contiguous with, the primary transmissive area and the flange; the transition region having generally greater mechanical rigidity than the primary transmissive area and generally lesser mechanical rigidity than the flange, thereby providing an intermediate rigidity transition between the dissimilar rigidities of the primary transmissive area and the flange. A radiation detection system comprises a sensor configured to detect radiation, disposed behind such an improved radiation window.
Abstract:
A method of making a high strength carbon fiber composite (CFC) wafer with low surface roughness comprising at least one sheet of CFC including carbon fibers embedded in a matrix. A stack of at least one sheet of CFC is provided with the stack having a first surface and a second surface. The stack is pressed between first and second pressure plates with a porous breather layer disposed between the first surface of the stack and the first pressure plate. The stack is cured by heating the stack to a temperature of at least 50° C.
Abstract:
The present invention refers to a method for assembling an electron exit window of an electron beam generating device, comprising the steps of: arranging a foil support plate on a housing of the electron beam generating device, bonding a window foil to a frame along at least one continuous bonding line, thus creating an exit window sub-assembly, and attaching the exit window sub-assembly onto the housing. The invention also relates to an electron exit window assembly.