摘要:
A method includes forming first isolation trenches in a first side of a first semiconductor-on-insulator (SOI) structure to electrically isolate multiple portions of the first SOI structure from each other. The method also includes bonding a second SOI structure to the first SOI structure to form multiple cavities between the SOI structures. The method further includes forming conductive plugs through a second side of the first SOI structure and forming second isolation trenches in the second side of the first SOI structure around the conductive plugs. In addition, the method includes removing portions of the second SOI structure to leave a membrane bonded to the first SOI structure. The isolated portions of the first SOI structure, the cavities, and the membrane form multiple capacitive micromachined ultrasonic transducer (CMUT) elements. Each CMUT element is formed in one of the isolated portions of the first SOI structure and includes multiple CMUT cells.
摘要:
The present invention provides an apparatus for functional imaging of an object that is compact, sensitive, and provides real-time three-dimensional images. The apparatus includes a source of non-ultrasonic energy, where the source induces generation of ultrasonic waves within the object. The source can provide any type of non-ultrasonic energy, including but not limited to light, heat, microwaves, and other electromagnetic fields. Preferably, the source is a laser. The apparatus also includes a single capacitive micromachined ultrasonic transducer (CMUT) device or an array of CMUTs. In the case of a single CMUT element, it can be mechanically scanned to simulate an array of any geometry. Among the advantages of CMUTs are tremendous fabrication flexibility and a typically wider bandwidth. Transducer arrays with high operating frequencies and with nearly arbitrary geometries can be fabricated. A method of functional imaging using the apparatus is also provided.