Abstract:
A torque sensing system generally includes a torque sensor comprising a torque sensing element configured upon a substrate in association with an antenna for sending and receiving wireless signals. A plurality of electronic controlling components for controlling the torque sensor, wherein the electronic controlling components are configured upon another substrate in association with an antenna for sending and receiving the wireless signals to and from the torque sensor, such that the torque sensor is located on a rotating member in order to generate signals indicative of a torque associated with the rotating member, and wherein the signals are wirelessly transmittable from the torque the via the antenna configured upon the substrate in association with the torque sensor.
Abstract:
A micro-machined acceleration sensing apparatus includes a piezoelectric substrate that functions as a propagation medium. A diaphragm is configured upon the substrate, wherein the diaphragm is etched to form one or more etched cavities. Sensing elements are formed on the diaphragm, wherein a first sensing element among the sensing elements is located on a top of the diaphragm, a second sensing element among the sensing elements is located on a side of the diaphragm, and a third sensing element among the sensing elements is located at a crystallography different orientation with respect to the first and second sensing elements, such that the substrate, the diaphragm and the plurality of sensing elements comprise a micro-machined acceleration sensing apparatus thereof that is clamped at one end of the substrate to an object under an acceleration and submitted to a force at the free end of the substrate to provide signals indicative of acceleration.
Abstract:
Sensor systems and methods are disclosed herein, including a sensor chip, upon which at least two surface acoustic wave (SAW) sensing elements are centrally located on a first side (e.g., front side) of the sensor chip. The SAW sensing elements occupy a common area on the first side of the sensor chip. An etched diaphragm is located centrally on the second side (i.e., back side) of the sensor chip opposite the first side in association with the two SAW sensing elements in order to concentrate the mechanical strain of the sensor system or sensor device in the etched diagram, thereby providing high strength, high sensitivity and ease of manufacturing thereof.
Abstract:
A torque sensor system and method. An automotive engine is located opposite a torque converter, such that a shaft extends from the engine and interacts with the torque converter. A target is located between the engine and torque converter. One or more torque sensors can be integrated with one or more position sensors for detecting a position associated with the shaft, wherein the torque sensor(s) and the position sensor(s) are integrated into a single torque sensor package to thereby provide enhanced sensing of the target in association with a rotation of shaft during an actuation of the engine.
Abstract:
A cooking oil quality sensing apparatus and system includes an acoustic wave sensor comprising one or more acoustic wave transducers configured upon a piezoelectric substrate such that when the acoustic wave sensor is in contact with cooking oil, the sensor generates acoustic wave data indicative of the quality of the cooking oil. An antenna can be integrated with the acoustic wave sensor, such that the antenna receives data an external source and transmits the acoustic wave data indicative of the quality of the cooking oil to the external source. An oscillator can be integrated with the acoustic wave sensor, such that the output of the oscillator contains data indicative of the quality of the cooking oil. The acoustic wave sensor can be coated with a material that is selectively sensitive and/or reactive to one or more fatty acids associated with or contained in the cooking oil.
Abstract:
A torque sensor packaging system and method includes a torque member that includes one or more holes formed therein for receiving one or more respective fasteners associated with a sensing element. The sensing element can be connected to the torque member to the sensing element in order to transfer torque associated with the torque member to the sensing element for torque sensing operations thereof.
Abstract:
A sensor system for dialysis applications includes a plurality of pressure sensors, wherein each pressure sensor can be provided as an LC type sensor, and/or an RLC type sensor. Each sensor among the plurality of pressure sensors can be inductively coupled with a respective antenna among a plurality of antennas for the wireless transmission of pressure data. A dialysis machine is generally connected to the plurality of antennas, wherein the plurality of pressure sensors monitors pressure during operation of the dialysis machine to generate pressure data that is wirelessly transmitted to at least one antenna among the plurality of antennas.
Abstract:
Disposable pressure sensor methods and systems are disclosed. A substrate can be provided, along with a capacitor and an inductor fixed to the substrate to form a pressure sensor thereof. In a variable L configuration, the inductor can be configured to comprise an inductor surface and a diaphragm, such that when the diaphragm is exposed to a pressure, the diaphragm moves close to the inductor surface, thereby resulting in an increase in the inductance and a decrease in the resonant frequency associated with the capacitor and the inductor and any associated circuitry. In a variable C configuration, the capacitor can be configured to comprise one electrode on the surface and one on the diaphragm, such that when the diaphragm is exposed to a pressure, the diaphragm moves close to the capacitor surface, thereby resulting in an increase in the capacitance and a decrease in the resonant frequency associated with the capacitor and the inductor and any associated circuitry. Such increase and/or decrease data are detectable by external interrogation.
Abstract:
In general, a dielectric polymer substrate provided and an antenna formed upon the dielectric polymer substrate. A piezoelectric polymer layer (e.g., a polyvinylidene fluoride (PVDF) piezoelectric film) can be formed above the dielectric polymer substrate. Additionally, an interdigital (IDT) layer can be configured upon the PVDF piezoelectric layer, thereby permitting the piezoelectric polymer layer and the IDT layer to detect pressure data and transmit the data to a receiver via the antenna.
Abstract:
A quartz sensor method and system are disclosed in which a plurality of SAW sensing resonators can be mechanically simulated for implementation upon a quartz wafer substrate. The quartz wafer substrate can thereafter be appropriately etched to produce a quartz diaphragm from the quartz wafer substrate. A plurality of SAW sensing resonators (e.g., pressure, reference and/or temperature SAW resonators) can then be located upon the quartz wafer substrate, which is based upon the previously mechanically simulated for implementation upon the substrate to thereby produce a quartz sensor package from the quartz wafer substrate.