摘要:
Cutting elements for incorporation in a drill bit are provided having a body having an end face interfacing with an ultra hard material cutting layer. A main depression having a nonplanar surface is formed on the substrate and extending to the peripheral edge of the substrate subjected to the highest impact loads during drilling. This edge is immediately below the edge of the cutting layer which makes direct contact with the earth formations during drilling. The main depression is formed by forming a plurality of secondary depressions or steps. A second main depression is formed by forming a plurality of secondary depressions or steps. The second main depression also extends to the peripheral edge of the substrate. An ultra hard material layer is bonded to the end face of the cutting element body over the main depressions.
摘要:
A gage trimmer and a bit incorporating such a gage trimmer are provided. The gage trimmer has an ultra hard material layer having a circumferential surface including a cylindrical portion and a flat surface for bearing against a circumferential wall of a hole drilled by the bit. The ultra hard material layer is formed over a substrate interface surface. The flat surface does not extend to the interface surface.
摘要:
A cutting layer is provided having a radially extending depression formed on the exposed surface of the cutting element's cutting layer. A corresponding depression may be formed on the substrate end surface below the depression formed on the cutting layer. Furthermore, secondary shallower depressions may be formed on the cutting layer. The cutting element is typically mounted in a drag bit such that the cutting layer radially extending depression makes contact with the earth formations.
摘要:
An ultra-hard semiconductive polycrystalline diamond (PCD) material formed with semiconductive diamond particles doped with Li, Be or Al and/or insulative diamond particles having semiconductive surfaces, tools incorporating the same, and methods for forming the same, are provided. The ultra-hard PCD material may be formed using a layer of insulative diamond grit feedstock that includes additives therein, then sintering to convert a plurality of the diamond crystals to include a semiconductive surface. In another embodiment, the ultra-hard PCD material is formed by sintering semiconductive diamond grit feedstock consisting of diamond crystals doped with Li, Al or Be. The ultra-hard semiconductive PCD cutting layer exhibits increased cuttability, especially in EDM and EDG cutting operations.
摘要:
A cutting element and bit incorporating the cutting element is provided, as well as a method for forming the same. The cutting element includes an ultra hard material layer including chromium and carbon and exhibiting increased abrasion resistance without sacrificing toughness. The method for manufacturing the cutting element includes providing a layer of ultra hard material particles and chromium carbide over the substrate, and then sintering to form the cutting element.
摘要:
Polycrystalline diamond (PCD) carbide composites of this invention have a microstructure comprising a plurality of granules formed from PCD, polycrystalline cubic boron nitride, or mixture thereof, that are distributed within a substantially continuous second matrix region that substantially surrounds the granules and that is formed from a cermet material. In an example embodiment, the granules are polycrystalline diamond and the cermet material is cemented tungsten carbide. PCD carbide composites of this invention display improved properties of fracture toughness and chipping resistance, without substantially compromising wear resistance, when compared to conventional pure PCD materials.
摘要:
Thermally stable diamond-bonded compacts include a diamond-bonded body having a thermally stable region extending a distance below a diamond-bonded body surface. The thermally stable region comprises a matrix first phase of bonded together diamond crystals, and a second phase interposed within the matrix phase. At least some population of the second phase comprises a reaction product formed between an infiltrant material and the diamond crystals at high pressure/high temperature conditions. The diamond bonded body further includes a polycrystalline diamond region that extends a depth from the thermally stable region and has a microstructure comprising a polycrystalline diamond matrix phase and a catalyst material disposed within interstitial regions of the matrix phase. The compact includes a substrate attached to the diamond-bonded body.
摘要:
Ultrahard composite constructions comprise a plurality of first phases dispersed within a matrix second phase, wherein each can comprise an ultrahard material including PCD, PcBN, and mixtures thereof. The constructions are formed from a plurality of granules that are combined and sintered at HP/HT conditions. The granules include a core surrounded by a shell and both are formed from an ultrahard material or precursor comprising an ultrahard constituent for forming the ultrahard material. When sintered, the cores form the plurality of first phases, and the shells form at least a portion of the second phase. The ultrahard material used to form the granule core may have an amount of ultrahard constituent different from that used to form the granule shell to provide desired different properties. The ultrahard constituent in the granule core and shell can have approximately the same particle size.
摘要:
Polycrystalline diamond (PCD) carbide composites of this invention have a microstructure comprising a plurality of granules formed from PCD, polycrystalline cubic boron nitride, or mixture thereof, that are distributed within a substantially continuous second matrix region that substantially surrounds the granules and that is formed from a cermet material. In an example embodiment, the granules are polycrystalline diamond and the cermet material is cemented tungsten carbide. PCD carbide composites of this invention display improved properties of fracture toughness and chipping resistance, without substantially compromising wear resistance, when compared to conventional pure PCD materials.
摘要:
Polycrystalline diamond (PCD) carbide composites of this invention have a microstructure comprising a plurality of granules formed from PCD, polycrystalline cubic boron nitride, or mixture thereof, that are distributed within a substantially continuous second matrix region that substantially surrounds the granules and that is formed from a cermet material. In an example embodiment, the granules are polycrystalline diamond and the cermet material is cemented tungsten carbide. PCD carbide composites of this invention display improved properties of fracture toughness and chipping resistance, without substantially compromising wear resistance, when compared to conventional pure PCD materials.