Abstract:
A ramp signal generation circuit is disclosed. The ramp signal generation circuit comprises a ramp signal generator, a buffer, a comparator, and a switching circuit. The switching circuit provides current to an output of the ramp signal generation circuit in response to a control signal output by the comparator. When a high slew rate is required, the output of the ramp signal generation circuit is driven by the current provided by the switching circuit. Otherwise, the output of the ramp signal generation circuit is driven by an output of the buffer.
Abstract:
Provided are a CMOS image sensor (CIS) type image sensing device for averaging and sub-sampling analog image signals at a variable sub-sampling rate and a method of driving the same. The image sensing device includes: a two-dimensional active pixel sensor (APS) array including pixels arranged in rows and columns; an averaging unit averages reset signals and image signals alternately generated from each of pixels corresponding to odd- numbered and even-numbered rows and columns in based on a predetermined sub-sampling rate in a sub-sampling mode by repeating a method of accumulating, averaging, (and dumping) the reset signals and the image signals, and generating a comparison signal corresponding to a difference between the average of the reset signals and the average of the image signals; and a conventional digital signal output circuit that generates digital signals corresponding to the sub-sampled (averaged) image signals generated from the pixels represented by the comparison signal. The CIS type image sensing device can analog-average image signals output from pixels at a variable sub-sampling rate and carry out a sub-sampling operations for moving pictures, without increasing chip size.
Abstract:
Provided are an improved solid-state image-sensing device for averaging sub-sampled analog signals and a method for driving the same. The solid-state image-sensing device receives a video signal from each pixel column and converts the video signal into a digital signal while a switch for averaging is turned off when the solid-state image-sensing device captures a still image. When the solid-state image-sensing device photographs a moving picture, one of two CDS circuits receives a signal corresponding to an average of video signals of columns having the same color pixel and converts the signal into a digital signal using the switch turned on.
Abstract:
Provided are a CIS circuit that does not increase an initial voltage charge time allocated by a CDS even if a pixel size is reduced and a method of providing an initial charge to the CIS circuit. The CIS circuit may include an APS block, a current source block and a charge supply block. The APS block may output APS signals from APS output terminals in response to sensed image transfer signals, pixel select signals and pixel reset signals. The current source block may control currents flowing from the APS output terminals to a power supply in response to a bias voltage. The charge supply block may provide a quantity of charges to the APS output terminals in response to a representative reset signal and a pre-resent signal.
Abstract:
Provided are a CIS circuit that does not increase an initial voltage charge time allocated by a CDS even if a pixel size is reduced and a method of providing an initial charge to the CIS circuit. The CIS circuit may include an APS block, a current source block and a charge supply block. The APS block may output APS signals from APS output terminals in response to sensed image transfer signals, pixel select signals and pixel reset signals. The current source block may control currents flowing from the APS output terminals to a power supply in response to a bias voltage. The charge supply block may provide a quantity of charges to the APS output terminals in response to a representative reset signal and a pre-resent signal.
Abstract:
A ramp signal generation circuit is disclosed. The ramp signal generation circuit comprises a ramp signal generator, a buffer, a comparator, and a switching circuit. The switching circuit provides current to an output of the ramp signal generation circuit in response to a control signal output by the comparator. When a high slew rate is required, the output of the ramp signal generation circuit is driven by the current provided by the switching circuit. Otherwise, the output of the ramp signal generation circuit is driven by an output of the buffer.
Abstract:
Provided are a CMOS image sensor (CIS) type image sensing device for averaging and sub-sampling analog image signals at a variable sub-sampling rate and a method of driving the same. The image sensing device includes: a two-dimensional active pixel sensor (APS) array including pixels arranged in rows and columns; an averaging unit averages reset signals and image signals alternately generated from each of pixels corresponding to odd- numbered and even-numbered rows and columns in based on a predetermined sub-sampling rate in a sub-sampling mode by repeating a method of accumulating, averaging, (and dumping) the reset signals and the image signals, and generating a comparison signal corresponding to a difference between the average of the reset signals and the average of the image signals; and a conventional digital signal output circuit that generates digital signals corresponding to the sub-sampled (averaged) image signals generated from the pixels represented by the comparison signal. The CIS type image sensing device can analog-average image signals output from pixels at a variable sub-sampling rate and carry out a sub-sampling operations for moving pictures, without increasing chip size.
Abstract:
Provided are an improved solid-state image-sensing device for averaging sub-sampled analog signals and a method for driving the same. The solid-state image-sensing device receives a video signal from each pixel column and converts the video signal into a digital signal while a switch for averaging is turned off when the solid-state image-sensing device captures a still image. When the solid-state image-sensing device photographs a moving picture, one of two CDS circuits receives a signal corresponding to an average of video signals of columns having the same color pixel and converts the signal into a digital signal using the switch turned on.