Abstract:
A nickel composite hydroxide containing reduced amounts of sulfate radicals and chlorine as impurities. The nickel composite hydroxide is represented by Ni1-x-yCoxAly(OH)2+α(0.05≤x≤0.01≤y≤0.2, x+y
Abstract:
Provided is a positive-electrode material for nonaqueous-electrolyte secondary batteries, the positive-electrode material being capable of achieving both high capacity and high output when used for a positive electrode for nonaqueous-electrolyte secondary batteries. Also, provided is a method for manufacturing the positive-electrode material for nonaqueous-electrolyte secondary batteries, wherein a lithium metal composite oxide powder is mixed with lithium tungstate, the lithium metal composite oxide powder being represented by a general formula LizNi1−x−yCoxMyO2 (wherein 0.10≤x≤0.35, 0≤y≤0.35, 0.97≤z≤1.20, and M is an addition element and at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al) and comprising primary particles and secondary particles composed of aggregation of the primary particles.
Abstract:
A positive electrode active material is provided that has a high capacity, a low irreversible capacity, an excellent initial charge/discharge efficiency, and excellent rate characteristics. This positive electrode active material comprises a hexagonal lithium nickel complex oxide having a layer structure and represented by the general formula LixNi1−y−zCoyMzO2 (0.98≤x≤1.04, 0.25≤y≤0.40, 0≤z≤0.07, and M is at least one element selected from Al, Ti, Mn, Ga, Mg, and Nb), wherein a lithium occupancy rate in a lithium main layer as obtained by Rietveld analysis from the x-ray diffraction pattern is at least 98.7%, and a crystallite diameter as calculated from the peak for the (003) plane in x-ray diffraction is 50 to 300 nm.
Abstract:
The purpose of the present invention is to provide a positive-electrode active material for non-aqueous electrolyte secondary batteries that is capable of achieving both a high capacity and a high output. This positive-electrode active material contains a lithium-nickel composite oxide represented by the general formula: LibNi1-x-yCoxMyO2 wherein M represents at least one element selected from Al, Ti, Mn and W, b is 0.95≤b≤1.03, x is 0
Abstract:
A method for manufacturing a positive active material for a nonaqueous electrolyte secondary battery having both thermal stability and charge-discharge capacity at a high level as well as excellent cycle characteristics. The method for manufacturing a positive active material for a nonaqueous electrolyte secondary battery includes: a step of adding a niobium salt solution and an acid simultaneously to a slurry of a nickel-containing hydroxide, and controlling the pH of the slurry at between 7 and 11 on a 25° C. basis to obtain a nickel-containing hydroxide coated with a niobium compound; a step of mixing the nickel-containing hydroxide coated with the niobium compound with a lithium compound to obtain a lithium mixture; and a step of firing the lithium mixture in an oxidizing atmosphere at 700° C. to 830° C. to obtain a lithium-transition metal composite oxide.
Abstract:
Provided is a positive-electrode material for nonaqueous-electrolyte secondary batteries, the positive-electrode material being capable of achieving both high capacity and high output when used for a positive electrode for nonaqueous-electrolyte secondary batteries. Also, provided is a method for manufacturing the positive-electrode material for nonaqueous-electrolyte secondary batteries, wherein a lithium metal composite oxide powder is mixed with lithium tungstate, the lithium metal composite oxide powder being represented by a general formula LizNi1-x-yCoxMyO2 (wherein 0.10≦x≦0.35, 0≦y≦0.35, 0.97≦z≦1.20, and M is an addition element and at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al) and comprising primary particles and secondary particles composed of aggregation of the primary particles.
Abstract:
The purpose of the present invention is to provide a positive-electrode active material for non-aqueous electrolyte secondary batteries that is capable of achieving both a high capacity and a high output. This positive-electrode active material contains a lithium-nickel composite oxide represented by the general formula: LibNi1-x-yCoxMyO2 wherein M represents at least one element selected from Al, Ti, Mn and W, b is 0.95≤b≤1.03, x is 0
Abstract:
Provided is a positive-electrode material for nonaqueous-electrolyte secondary batteries, the positive-electrode material being capable of achieving both high capacity and high output when used for a positive electrode for nonaqueous-electrolyte secondary batteries. Also, provided is a method for manufacturing the positive-electrode material for nonaqueous-electrolyte secondary batteries, wherein a lithium metal composite oxide powder is mixed with lithium tungstate, the lithium metal composite oxide powder being represented by a general formula LizNi1-x-yCoxMyO2 (wherein 0.10≦x≦0.35, 0≦y≦0.35, 0.97≦z≦1.20, and M is an addition element and at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al) and comprising primary particles and secondary particles composed of aggregation of the primary particles.
Abstract:
Provided is a method for producing a positive electrode active material for nonaqueous electrolyte secondary batteries that achieves both high thermal stability and high charge/discharge capacity and has excellent cycle characteristics and an easy and safe production method thereof, and a nonaqueous electrolyte secondary battery using the positive electrode active material.A method for producing a positive electrode active material for nonaqueous electrolyte secondary batteries includes a crystallization step of adding an alkaline aqueous solution to a mixed aqueous solution containing at least nickel and cobalt for crystallization to obtain a nickel-containing hydroxide represented by a general formula Ni1−a′−b′COa′Mb′(OH)2, a mixing step of mixing the obtained nickel-containing hydroxide, a lithium compound, and a niobium compound to obtain a lithium mixture, and a firing step of firing the lithium mixture in an oxidative atmosphere at 700 to 840° C. to obtain a lithium-transition metal composite oxide.
Abstract:
A method for manufacturing a positive active material for a nonaqueous electrolyte secondary battery having both thermal stability and charge-discharge capacity at a high level as well as excellent cycle characteristics. The method for manufacturing a positive active material for a nonaqueous electrolyte secondary battery includes: a step of adding a niobium salt solution and an acid simultaneously to a slurry of a nickel-containing hydroxide, and controlling the pH of the slurry at between 7 and 11 on a 25° C. basis to obtain a nickel-containing hydroxide coated with a niobium compound; a step of mixing the nickel-containing hydroxide coated with the niobium compound with a lithium compound to obtain a lithium mixture; and a step of firing the lithium mixture in an oxidizing atmosphere at 700° C. to 830° C. to obtain a lithium-transition metal composite oxide.