摘要:
Disclosed are a hydrothermally stable porous molecular sieve catalyst and a preparation method thereof. The catalyst consists of a product obtained by the evaporation of water from a raw material mixture comprising a molecular sieve having a framework of Si—OH—Al—, a water-insoluble metal salt and a phosphate compound. The catalyst maintains its physical and chemical stabilities even in an atmosphere of high temperature and humidity. Accordingly, the catalyst shows excellent catalytic activity even when it is used in a severe process environment of high temperature and humidity in heterogeneous catalytic reactions, such as various oxidation/reduction reactions, including catalytic cracking reactions, isomerization reactions, alkylation reactions and esterification reactions.
摘要:
Disclosed is a process for producing light olefins from hydrocarbon feedstock. The process is characterized in that a porous molecular sieve catalyst consisting of a product obtained by evaporating water from a raw material mixture comprising a molecular sieve with a framework of Si—OH—Al— groups, a water-insoluble metal salt, and a phosphate compound, is used to produce light olefins, particularly ethylene and propylene, from hydrocarbon, while maintaining excellent selectivity to light olefins. According to the process, by the use of a specific catalyst with hydrothermal stability, light olefins can be selectively produced in high yield with high selectivity from hydrocarbon feedstock, particularly full-range naphtha. In particular, the process can maintain higher cracking activity than the reaction temperature required in the prior thermal cracking process for the production of light olefins, and thus, can produce light olefins with high selectivity and conversion from hydrocarbon feedstock.
摘要:
Disclosed are a molecular sieve catalyst and a preparation method thereof to produce light olefins from cracking naphtha catalytically in severe environments of high temperature and high moisture. In detail, the catalyst is prepared by spray-drying and calcining the mixed slurry, in which 0.01˜5.0 wt % of MnO2 and 1˜15 wt % of P2O5 are simultaneously imbedded in catalyst which consists of zeolite, clay and inorganic complex. According to the present invention, the method that manganese and phosphate are imbedded simultaneously in zeolite and inorganic complex is used to increases thermal-stability of obtained spherical catalyst, and increase olefin yield of cracking hydrocarbon such as naphtha by protecting acid-site of zeolite. To synthesize the required catalyst, the important procedures are mixing ratio and mixing sequence of Mn, P, zeolite, and inorganic complex.
摘要翻译:公开了一种分子筛催化剂及其制备方法,用于在严酷的高温高湿环境下催化裂解石脑油。 详细地,通过喷雾干燥和煅烧混合浆料制备催化剂,其中0.01〜5.0wt%的MnO 2和1〜15wt%的P 2 O 5同时嵌入由沸石,粘土和无机络合物组成的催化剂中。 根据本发明,使用锰和磷酸盐同时嵌入沸石和无机络合物的方法来提高所得球形催化剂的热稳定性,并通过保护沸石的酸性位点来提高裂解烃如石脑油的烯烃产率。 为了合成所需的催化剂,重要的步骤是Mn,P,沸石和无机络合物的混合比和混合顺序。
摘要:
Disclosed are a molecular sieve catalyst and a preparation method thereof to produce light olefins from cracking naphtha catalytically in severe environments of high temperature and high moisture. In detail, the catalyst is prepared by spray-drying and calcining the mixed slurry, in which 0.01˜5.0 wt % of MnO2 and 1˜15 wt % of P2O5 are simultaneously imbedded in catalyst which consists of zeolite, clay and inorganic complex. According to the present invention, the method that manganese and phosphate are imbedded simultaneously in zeolite and inorganic complex is used to increases thermal-stability of obtained spherical catalyst, and increase olefin yield of cracking hydrocarbon such as naphtha by protecting acid-site of zeolite. To synthesize the required catalyst, the important procedures are mixing ratio and mixing sequence of Mn, P, zeolite, and inorganic complex.
摘要翻译:公开了一种分子筛催化剂及其制备方法,用于在严酷的高温高湿环境下催化裂解石脑油。 详细地,通过喷雾干燥和煅烧混合浆料制备催化剂,其中0.01〜5.0重量%的MnO 2和1〜15重量%的P 2 O 5同时嵌入由沸石,粘土和无机络合物组成的催化剂中。 根据本发明,使用锰和磷酸盐同时嵌入沸石和无机络合物的方法来提高所得球形催化剂的热稳定性,并通过保护沸石的酸性位点来提高裂解烃如石脑油的烯烃产率。 为了合成所需的催化剂,重要的步骤是Mn,P,沸石和无机络合物的混合比和混合顺序。
摘要:
Disclosed herein is a method of preparing ZSM-5, including: providing a nanocrystalline ZSM-5 seed having a size of 70˜300 nm; adding the nanocrystalline ZSM-5 seed to a stock solution including water glass as a silica source, an alumina source, a neutralizer and water to form a reaction mixture; and maintaining the reaction mixture at 150˜200° C. to crystallize the reaction mixture. The method is advantageous in that ZSM-5 having small and uniform crystal sizes and including no impurities can be synthesized in a short period of time.
摘要:
A method of preparing ZSM-5, including: providing a nanocrystalline ZSM-5 seed having a size of 70-150 nm; adding the nanocrystalline ZSM-5 seed to a stock solution including water glass as a silica source, an alumina source, a neutralizer and water to form a reaction mixture; and maintaining the reaction mixture at 150-200° C. to crystallize the reaction mixture. The method is advantageous in that ZSM-5 having small and uniform crystal sizes and including no impurities can be synthesized in a short period of time.
摘要:
A porous solid acid catalyst for producing light olefins is prepared through pillaring and a solid state reaction of a raw material mixture. The catalyst is made of a porous material having a crystalline structure that is different from that of the raw material mixture. The catalyst exhibits excellent catalytic activity (i.e., conversion and selectivity) in the production of light olefins from hydrocarbon feeds such as full range naphthas.
摘要:
A porous solid acid catalyst for producing light olefins is prepared through pillaring and a solid state reaction of a raw material mixture. The catalyst is made of a porous material having a crystalline structure that is different from that of the raw material mixture. The catalyst exhibits excellent catalytic activity (i.e., conversion and selectivity) in the production of light olefins from hydrocarbon feeds such as full range naphthas.
摘要:
A porous solid acid catalyst for producing light olefins is prepared through pillaring and a solid state reaction of a raw material mixture. The catalyst is made of a porous material having a crystalline structure that is different from that of the raw material mixture. The catalyst exhibits excellent catalytic activity (i.e., conversion and selectivity) in the production of light olefins from hydrocarbon feeds such as full range naphthas.
摘要:
Disclosed is a process for increasing production of light olefinic hydrocarbons from hydrocarbon feedstock by catalytic cracking. In the process, an effective separation process structure and recycle method of light olefins are used not only to increase the productivity and efficiency of an overall process, thus effectively increasing the production of light olefins, but also to simplify the overall process.