Abstract:
An array substrate includes a gate line, a data line, a thin-film transistor (TFT), a pixel electrode, a first sensor line, a second sensor line and a sensor electrode part. The TFT is electrically connected to the gate and data lines. The pixel electrode is formed in a unit area defined by the gate and data lines. The pixel electrode is electrically connected to the TFT. The first sensor line is substantially parallel with the gate line. The second sensor line is substantially parallel with the data line. The sensor electrode part is formed in the unit area and electrically connected to the first and second sensor lines. The sensor electrode part is adjacent to the pixel electrode in a large axis direction of the unit area.
Abstract:
A liquid crystal composition obtained by mixing a phenylalkyl dioxaborinane derivative, an isothiocyanate derivative, a tolan derivative and a pyrimidine-phenyl derivative in an appropriate ratio, and a liquid crystal display using the same are provided. The liquid crystal composition reveals a nematic phase at a wide range of a temperature including room temperature and having optical anisotropies and dielectric anisotropies of various magnitudes. Also, a twisted nematic (TN) type liquid crystal display manufactured using the liquid crystal composition can be driven in a multiplexed manner.
Abstract:
A display device includes a panel assembly, a backlight unit supplying light to the panel assembly, a first photosensor, a second photosensor, a sensing signal processor and a signal controller. The first photosensor is supplied with ambient light and light from the backlight unit to generate a first sensing signal. The second photosensor is blocked from the ambient light and receives the light from the backlight unit to generate a second sensing signal. The sensing signal processor receives the first and the second sensing signals from the first and the second photosensors for processing. The signal controller determines a sensing state responsive to processed first and second sensing signals from the sensing signal processor and performing a predetermined control operation responsive to the sensing state.
Abstract:
A display device includes a panel assembly, a backlight unit supplying light to the panel assembly, a first photosensor, a second photosensor, a sensing signal processor and a signal controller. The first photosensor is supplied with ambient light and light from the backlight unit to generate a first sensing signal. The second photosensor is blocked from the ambient light and receives the light from the backlight unit to generate a second sensing signal. The sensing signal processor receives the first and the second sensing signals from the first and the second photosensors for processing. The signal controller determines a sensing state responsive to processed first and second sensing signals from the sensing signal processor and performing a predetermined control operation responsive to the sensing state.
Abstract:
A method of manufacturing a microlens substrate includes forming a microlens sheet of a photosensitive resin including a lenticular lens array on a lower substrate, exposing the microlens sheet to light through a mask dividing the lenticular lens array into a plurality of portions respectively corresponding to a plurality of cells and defining a boundary between each of the plurality of cells, planarizing a portion of the microlens sheet corresponding to the boundary, and forming a seal line on the planarized boundary to combine the lower substrate with a corresponding upper substrate.
Abstract:
A polarizer which includes a polarization film having a transmissive region and a reflective region, the reflective region being comprised of a layer of reflective material supported