摘要:
An organic electro luminescence device is provided. In the organic electro luminescence device, first and second electrodes are arranged to face each other and to be spaced apart from each other by a predetermined interval, and includes sub-pixels for reproducing an image. An array element is formed in the first substrate per sub-pixel, and includes at least one TFT. An organic electro luminescent diode is formed in the second substrate per sub-pixel. A spacer covered with a metal portion for electrically connecting the first and second substrates. A drain electrode of the TFT and a first electrode (anode) of the organic electro luminescent diode are electrically connected by the spacer covered with the metal portion.
摘要:
An organic electro luminescence device is provided. A thin film transistor (TFT) is formed within a sub-pixel region defined by a gate line and a data line on a substrate. A passivation layer and a first electrode are sequentially formed on the substrate where the TFT is formed. A contact hole is formed at a predetermined portion of the passivation layer and the first electrode so as to expose a drain electrode of the TFT. An electrode separator and a buffer layer are misaligned with the gate line by a predetermined position, such that an emission region corresponding to the sub-pixel and a region including the contact hole of the TFT are separated. An organic electro luminescent layer is formed within a region defined by the buffer region. A second electrode is formed on the organic electrode luminescent layer and is connected to the drain electrode of the TFT through the contact hole.
摘要:
An organic electro luminescence device is presented in which ink forming an organic electro luminescent layer is prevented from overflowing edges of a pixel region. The organic electro luminescent device includes first and second substrates and sub-pixels in the first and second substrates. An array element includes a thin film transistor formed on the first substrate in each sub-pixel. A first electrode is formed at an inner surface of the second substrate. A buffer is formed at an outer region to partition each sub-pixel formed on the first electrode. A first electrode separator is formed on the buffer and a second electrode separator is formed in a region including a stepped portion of the buffer. An organic electro luminescent layer is formed within a region partitioned by the second electrode separator. A second electrode is formed on the second substrate where the organic electro luminescent layer is formed.
摘要:
An organic electroluminescence device includes a buffer formed in a polygonal structure corresponding to each of sub-pixels, an electrode separator formed along an outer periphery of the buffer so as to separate the sub-pixels, an emission region formed in an inner region defined by the buffer, and an electric connection region formed in a region protruding from one side of the buffer.
摘要:
A patterning apparatus for an electroluminescent display includes a molding plate provided with a plurality of convex portions and concave portions; a polymer supplying roller adjacent to the molding plate to apply an electroluminescent material to the molding plate via rotational movement; and a molding roller attached to the molding plate to apply the electroluminescent material on the molding plate to an adjacent substrate via rotational movement.
摘要:
An organic electro-luminance display device includes a first substrate and a second substrate; an array element on the first substrate, the array element including at least one thin film transistor (TFT) in each sub-pixel; a first electrode on the second substrate; a buffer on the first electrode including a first buffer at an outer region partitioning each sub-pixel and a second buffer at a region including a stepped portion of the first buffer, wherein a undercut structure is formed by the first and second buffers; an organic electro-luminescent layer in each sub-pixel partitioned by the second buffer; a second electrode formed on the organic electro-luminescent layer; and a conductive spacer for electrically connecting the TFT to the second electrode.
摘要:
An organic electro-luminescence device is provided. First and second substrates are arranged spaced apart from each other by a predetermined distance and sub-pixels are defined in the substrates. An array element has at least one thin film transistor (TFT) formed on an inner surface of the first substrate in sub-pixel unit. A conductive spacer is electrically connected to a drive TFT of the array element. A first electrode for an organic electro-luminescence diode is disposed on an inner surface of the second substrate. An organic electro-luminescence layer and a second electrode for the organic electro-luminescence diode are sequentially formed on the first electrode in sub-pixel unit. The first substrate and the second substrate are misaligned by a predetermined position and attached to each other, such that the conductive spacer is in contact with a conductive spacer contact region provided on the second electrode.
摘要:
An electro luminescence display device having a display area and a non-display area includes a plurality of display organic light emission layers formed in the display area and a dummy organic light emission layer formed in the non-display area.
摘要:
The present invention relates to an Natriuretic peptide conjugate having improved in-vivo duration of efficacy and stability, comprising an Natriuretic peptide, a non-peptidyl polymer and a carrier substance, which are covalently linked to each other, and a use of the same. The Natriuretic peptide conjugate of the present invention has the in-vivo activity which is maintained relatively high, and has remarkably increased blood half-life, and thus it can be desirably employed in the development of long-acting formulations of various peptide drugs.
摘要:
An organic electro luminescence device includes: a display region and a non-display region defined in first and second substrates, sub-pixels defined in the display region; an array element including at least one TFT in the display region of the first substrate in each sub-pixel; a first electrode in an inner surface of the second substrate; a buffer in a predetermined region to partition an emission region of each sub-pixel on the first electrode, and an electrode separator on the buffer; an insulating layer in the emission region of each sub-pixel, and a spacer formed on the insulating layer; an organic electro luminescent layer in the emission region of each sub-pixel, the emission region including the insulating layer and the spacer; and a second electrode on the second substrate where the organic electro luminescent layer is formed.